Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Econometrics: MULTIPLE REGRESSION: ESTIMATION AND HYPOTHESIS TESTING CM FLR PGNP

ID: 3157460 • Letter: E

Question

Econometrics: MULTIPLE REGRESSION: ESTIMATION AND HYPOTHESIS TESTING

CM

FLR

PGNP

TFR

128

37

1870

6.66

204

22

130

6.15

202

16

310

7

197

65

570

6.25

96

76

2050

3.81

209

26

200

6.44

170

45

670

6.19

240

29

300

5.89

241

11

120

5.89

55

55

290

2.36

75

87

1180

3.93

129

55

900

5.99

24

93

1730

3.5

165

31

1150

7.41

94

77

1160

4.21

96

80

1270

5

148

30

580

5.27

98

69

660

5.21

161

43

420

6.5

118

47

1080

6.12

269

17

290

6.19

189

35

270

5.05

126

58

560

6.16

12

81

4240

1.8

167

29

240

4.75

135

65

430

4.1

107

87

3020

6.66

72

63

1420

7.28

128

49

420

8.12

27

63

19830

5.23

152

84

420

5.79

224

23

530

6.5

142

50

8640

7.17

104

62

350

6.6

287

31

230

7

41

66

1620

3.91

312

11

190

6.7

77

88

2090

4.2

142

22

900

5.43

262

22

230

6.5

215

12

140

6.25

246

9

330

7.1

191

31

1010

7.1

182

19

300

7

37

88

1730

3.46

103

35

780

5.66

67

85

1300

4.82

143

78

930

5

83

85

690

4.74

223

33

200

8.49

240

19

450

6.5

312

21

280

6.5

12

79

4430

1.69

52

83

270

3.25

79

43

1340

7.17

61

88

670

3.52

168

28

410

6.09

28

95

4370

2.86

121

41

1310

4.88

115

62

1470

3.89

186

45

300

6.9

47

85

3630

4.1

178

45

220

6.09

142

67

560

7.2

CM

FLR

PGNP

TFR

128

37

1870

6.66

204

22

130

6.15

202

16

310

7

197

65

570

6.25

96

76

2050

3.81

209

26

200

6.44

170

45

670

6.19

240

29

300

5.89

241

11

120

5.89

55

55

290

2.36

75

87

1180

3.93

129

55

900

5.99

24

93

1730

3.5

165

31

1150

7.41

94

77

1160

4.21

96

80

1270

5

148

30

580

5.27

98

69

660

5.21

161

43

420

6.5

118

47

1080

6.12

269

17

290

6.19

189

35

270

5.05

126

58

560

6.16

12

81

4240

1.8

167

29

240

4.75

135

65

430

4.1

107

87

3020

6.66

72

63

1420

7.28

128

49

420

8.12

27

63

19830

5.23

152

84

420

5.79

224

23

530

6.5

142

50

8640

7.17

104

62

350

6.6

287

31

230

7

41

66

1620

3.91

312

11

190

6.7

77

88

2090

4.2

142

22

900

5.43

262

22

230

6.5

215

12

140

6.25

246

9

330

7.1

191

31

1010

7.1

182

19

300

7

37

88

1730

3.46

103

35

780

5.66

67

85

1300

4.82

143

78

930

5

83

85

690

4.74

223

33

200

8.49

240

19

450

6.5

312

21

280

6.5

12

79

4430

1.69

52

83

270

3.25

79

43

1340

7.17

61

88

670

3.52

168

28

410

6.09

28

95

4370

2.86

121

41

1310

4.88

115

62

1470

3.89

186

45

300

6.9

47

85

3630

4.1

178

45

220

6.09

142

67

560

7.2

4.14. Table 4-7 (found on the textbook's Web site) gives data on child mortality (CM), female literacy rate (FLR), per capita GNP (PGNP), and total fertility rate (TFR) for a group of 64 countries a. A priori, what is the expected relationship between CM and each of the other variables? b. Regress CM on FLR and obtain the usual regression results c. Regress CM on FLR and PGNP and obtain the usual results. d. Regress CM on FLR, PGNP, and TFR and obtain the usual results. Also e. Given the various regression results, which model would you choose and f. If the regression model in (d) is the correct model, but you estimate (a) or (b) g. Suppose you have regressed CM on FLR as in (b). How would you decide show the ANOVA table. why? or (c), what are the consequences? if it is worth adding the variables PGNP and TFR to the model? Which test would you use? Show the necessary calculations

Explanation / Answer

In the data set the following variables are recorded and namely child mortality (CM), female literacy rate (FLR), per capita GNP (PGNP) and total fertality rate (TFR) and number of sample is 64.

a.

On the basis of Prior information we assumed that all variables are linearly related i.e CM is linearly related with the other variables.

b.

Regress CMon FLR and regression results as follows , here we use the R- software

x<-read.csv(file.choose(),header=T)
CM<-x[,1]
FLR<-x[,2]
PGNP<-x[,3]
TFR<-x[,4]

> lm(CM~FLR)

Call:
lm(formula = CM ~ FLR)

Coefficients:
(Intercept) FLR
263.86 -2.39

> summary(lm(CM~FLR))

Call:
lm(formula = CM ~ FLR)

Residuals:
Min 1Q Median 3Q Max
-86.262 -25.453 0.357 22.591 98.337

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 263.8635 12.2250 21.58 <2e-16 ***
FLR -2.3905 0.2133 -11.21 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 44.02 on 62 degrees of freedom
Multiple R-squared: 0.6696, Adjusted R-squared: 0.6643
F-statistic: 125.6 on 1 and 62 DF, p-value: < 2.2e-16

c.

Regress CM on FLR and PGNP and regression result as follows

> lm(CM~FLR + PGNP)

Call:
lm(formula = CM ~ FLR + PGNP)

Coefficients:
(Intercept) FLR PGNP
263.641586 -2.231586 -0.005647

> summary(lm(CM~FLR+PGNP))

Call:
lm(formula = CM ~ FLR + PGNP)

Residuals:
Min 1Q Median 3Q Max
-84.267 -24.363 0.709 19.455 96.803

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 263.641586 11.593179 22.741 < 2e-16 ***
FLR -2.231586 0.209947 -10.629 1.64e-15 ***
PGNP -0.005647 0.002003 -2.819 0.00649 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 41.75 on 61 degrees of freedom
Multiple R-squared: 0.7077, Adjusted R-squared: 0.6981
F-statistic: 73.83 on 2 and 61 DF, p-value: < 2.2e-16

d.

Regress CM on FLR, PGNP and TFR and regression results with ANOVA Table

> lm(CM~FLR + PGNP+TFR)

Call:
lm(formula = CM ~ FLR + PGNP + TFR)

Coefficients:
(Intercept) FLR PGNP TFR
168.306690 -1.768029 -0.005511 12.868636

> summary(lm(CM~FLR+PGNP+TFR))

Call:
lm(formula = CM ~ FLR + PGNP + TFR)

Residuals:
Min 1Q Median 3Q Max
-98.17 -18.56 3.32 17.12 98.72

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 168.306690 32.891655 5.117 3.44e-06 ***
FLR -1.768029 0.248017 -7.129 1.51e-09 ***
PGNP -0.005511 0.001878 -2.934 0.00473 **
TFR 12.868636 4.190533 3.071 0.00320 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 39.13 on 60 degrees of freedom
Multiple R-squared: 0.7474, Adjusted R-squared: 0.7347
F-statistic: 59.17 on 3 and 60 DF, p-value: < 2.2e-16

e.

Among the following model model - 3 ( d) be the best regression fitting model, multiple regression coefficient of this model is 0.7474 which is greater than other two model (model-1 (0.6696) and model - 2 (0.7077).

f.

In the fitting of the multiple regression model the model - 3 i.e d is the best model and during the fitting the model as variable was added in the model the value of multiple regression coefficent is also increases, and finally model -3 be have maximum multiple regression coefficient value.

g.

For the independent variable selection in the multiple regression, we use the t- test, at first we select that variable which is highely correlated with dependent variable. here CM is dependent variable and suppose that FLR already came in the regression model and i want to add the another variable PGNP and TFR in the model for that we use the t- test of correlation test, if it is insignificant then came in the model otherwise outside the model.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote