Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

An investment strategy has an expected return of 14 percent and a standard devia

ID: 3159015 • Letter: A

Question

An investment strategy has an expected return of 14 percent and a standard deviation of 9 percent. Assume investment returns are bell shaped. a. How likely is it to earn a return between 5 percent and 23 percent? (Enter your response as decimal values (not percentages) rounded to 2 decimal places.) Probability b. How likely is it to earn a return greater than 23 percent?(Enter your response as decimal values (not percentages) rounded to 2 decimal places.) Probability c. How likely is it to earn a return below 4 percent?(Enter your response as decimal values (not percentages) rounded to 2 decimal places.) Probability

Explanation / Answer

A)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    5      
x2 = upper bound =    23      
u = mean =    14      
          
s = standard deviation =    9      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -1      
z2 = upper z score = (x2 - u) / s =    1      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.158655254      
P(z < z2) =    0.841344746      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.682689492   [ANSWER]

******************************

b)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    23      
u = mean =    14      
          
s = standard deviation =    9      
          
Thus,          
          
z = (x - u) / s =    1      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   1   ) =    0.158655254 [ANSWER]

****************************

c)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    -4      
u = mean =    14      
          
s = standard deviation =    9      
          
Thus,          
          
z = (x - u) / s =    -2      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -2   ) =    0.022750132 [ANSWER]

  

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote