Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Using four decimal digit accuracy, explain if the respective distribution applie

ID: 3159177 • Letter: U

Question

Using four decimal digit accuracy, explain if the respective distribution applies and, if so determine the probability that at least 5 and at most 7 of 1000 randomly tested micro circuit from a shipment of 25,000 will fall assuming that historically and consistently on average 1 in every 125 tested fails. If it applies, use a Binominal distribution If it applies, use a Poisson distribution If it applies, use a Normal distribution Briefly Explain why statistically the preceding three results differ if they apply and differ

Explanation / Answer

6.

6.1.

It applies, as the probability of success is constant.

Note that P(between x1 and x2) = P(at most x2) - P(at most x1 - 1)          
          
Here,          
          
x1 =    5      
x2 =    7      
          
Using a cumulative binomial distribution table or technology, matching          
          
n = number of trials =    1000      
p = the probability of a success = 1/125 =   0.008      
          
Then          
          
P(at most    4   ) =    0.098714991
P(at most    7   ) =    0.452399935
          
Thus,          
          
P(between x1 and x2) =    0.353684944   [ANSWER]

************************************  

6.2

It fails 1 in every 125. So it is a rare event, so we can use a POISSON DISTRIBUTION.

Hence, the mean number of fails every n = 1000 is

u = mean = n p = 1000*(1/125) = 8.

Note that P(between x1 and x2) = P(at most x2) - P(at most x1 - 1)          
          
Here,          
          
x1 =    5      
x2 =    7      
          
Using a cumulative poisson distribution table or technology, matching          
          
u = the mean number of successes =    8      
          
          
Then          
          
P(at most    4   ) =    0.0996324
P(at most    7   ) =    0.452960809
          
Thus,          
          
P(between x1 and x2) =    0.353328409   [ANSWER]

******************************************

6.3.

We cannot use this as n p = 8 < 10. Hence, the sample size is not big enough.

****************************************

6.4.

6.1 and 6.2 differ slightly because 6.1 is the exact solution and 6.2 is just an approximation.  

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote