Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

9.0.9 points TanFin11 4.R006. 0/6 Submissions Used Use the simplex method to sol

ID: 3168177 • Letter: 9

Question

9.0.9 points TanFin11 4.R006. 0/6 Submissions Used Use the simplex method to solve the linear programming problem. Maximize p = x + 2y + 3z subject to 2x+ y + zs 21 3x + 2y +4z S 36 2x + 5y 2z S 15 The maximum is P = at (x, y, z)= | 10. 0.39/0.91 points l Previous Answers 1/6 Submissions Used A company manufactures Products A, B, and C. Each product is processed in three de available labor-hours per week for Departments I, II, and III are 900, 1080, and 840, (in hours per unit) and profit per unit for each product are as follows. (For example, to hours of work from Dept. I, 3 hours of work from Dept. II, and 2 hours of work from D ProductA Product B Product C 2 Dept. I Dept. Il Dept. III Profit 2 3 2 $36l $54 45 How many units of each product should t

Explanation / Answer

Simplex Metod :

Table 1
----------------------------------------------------------------
x      y      z      s1     s2     s3     p           
----------------------------------------------------------------

2      1      1      1      0      0      0      21   
3      2      4      0      1      0      0      36   
2      5      -2     0      0      1      0      15   
-1     -2     -3     0      0      0      1      0    

Table 2
----------------------------------------------------------------
x      y      z      s1     s2     s3     p           
----------------------------------------------------------------

1.3    0.5    0      1      -0.25 0      0      12   
0.75   0.5    1      0      0.25   0      0      9    
3.5    6      0      0      0.5    1      0      33   
1.3    -0.5   0      0      0.75   0      1      27   

Table 3
----------------------------------------------------------------
x      y      z      s1     s2     s3     p           
----------------------------------------------------------------

0.96   0      0      1      -0.29 -0.083 0      9.3  
0.46   0      1      0      0.21   -0.083 0      6.3  
0.58   1      0      0      0.083 0.17   0      5.5  
1.5    0      0      0      0.79   0.083 1      30   

Thus, Optimal Solution: p = 30; x = 0, y = 5.5, z = 6.3