Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

For a standard unit normal Z compute by using the Normal CDF Table Provided: (a)

ID: 3171656 • Letter: F

Question

For a standard unit normal Z compute by using the Normal CDF Table Provided:

(a) P(Z > 1.5)

(b) P(Z 1.8)

(c) P(1.5 < Z 1.5) = P(|Z| < 1.5)

(d) P(1.8 < Z < 1.2)

(e) P(Z > 0.5, Z 1.2)

Appendix Astatistical Tables and Charts tive Standard Normal Distritution TAD -0,03 084 00000 0.000062 000006 0000057 0000068 00000?2 0000092 0000096 0.000100 U000101 0.000013 4 00002 0000179 00002R) 00003500 00XH 0000789 00008 .00%813 000087. 0000901 00009 0.0007 -2.9 01395 000198 0001791 0005231 000570 -23 006756 0009127 0009.87 12 0009503 70 0010i -23 012716 004 0.0582 006 1780 006)00 0.06 0068 12 0.0883 09:098 -13 08373 0.135006 0,121001 0.16602 161037 0.192150 020326) 0223627 0226627 022A630 021269 0,214764 -06 0245007 0.293056 0.284339 322758 1032633 -0.4 031206? 359424 0.3631 030692 0.37700 0.37484 0.378 083:903 43250 A-40382 04443300 0.472097 048-1017 0A38033 0 19202 0.4960 0500000 A6144 Appendix Aislacistical Tables ard Charts rd NonmalDistribution IContinuent TABLE 0.05 0.50398 058706 0.590951 4 0255 0.029300 0633072 063683 0.621T 0677212 0,655-122 0.659m7 K.208 40 0.712250 071965 4 4537) 729069 073237 770350 th77 07 0 0813267 0.199516 0.8289M 0.85513 0343752 0.83 000 387 77 86861 0870762 0,899 090 091620 0.909377 09 i402. 926-17 0927 0920730 09173 093281 97062 0.967116 9777 0.93 0.932997 038 4l4 986395 0958696 0.98619 0,537 0.959850 0.990093 J 0.989276 0.99 0.992655 0.99)96 0.995. 0.996135 099631 0,9971 9985 0.993559 0998 0.98 0.999184 0.9992 0999 9 0999131 0.9993 0.9%10 09996 9560 0.9995 0.999 0.9995 0.99909 3.4 0.49663 0996 09998 0999800 0999307 0999 76 0949784 999888 0999922 0999925 99s95 0999 900 0.999901 0999908 0.9999 0,999 0892 0939933 0.499936 0999938 3.3 999 64 0999960 367 99956 0.99945 0.999959 0999 9 0.999952 99954

Explanation / Answer

(a) P(Z > 1.5) = 1 - P(Z<1.5) = 1 -0.93319 = 0.06681

(b) P(Z <=1.8) = 0.96407

(c) P( -1.5 < Z < 1.5) = P(Z<1.5) - P(Z<-1.5) = 0.93319 - 0.066807 = 0.866383

(d) P(1.8 < Z < 1.2) = P(Z<1.2) - P(Z<-1.8 ) = 0.88493-0.03593=0.849

(e) P(Z > 0.5, Z 1.2) = P(Z>0.5) + P(Z<-1.2)

= 1 - P(Z<0.5) + P(Z<-1.2) = 1 - 0.69146 + 0.11507 =0.42361

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote