Cascade Manufacturing has just received an order from their largest customer for
ID: 3172191 • Letter: C
Question
Cascade Manufacturing has just received an order from their largest customer for 80 motors.
a. Use the regression model from part 1 to provide a 90% confidence interval for the average cost of an order of 80 motors.
b. Again, using the regression model from part 1, produce a 90% prediction interval for the cost of this particular order.
I have no clue where to begin here. The regression model from part 1 just refers to a regression model made in excel. Please go step by step and use excel wherever possible. Thank you!
$ 5,964
Order Size Total Cost 56 $ 7,531 54 $ 6,329 68 $ 8,413 60 $ 7,793 38 $ 5,360 42 $ 4,838 22 $ 2,551 34 $ 3,899 66 $ 8,326 46 $ 5,465 14 $ 2,283 46 $ 5,413 36 $ 4,238 52 $ 6,911 40 $ 6,315 58 $ 8,243 20 $ 2,866 44 $ 6,775 28 $ 4,289 12 $ 1,475 30 $ 3,590 70 $ 9,439 46 $ 6,760 36 $ 5,170 62 $ 7,780 42 $ 4,896 70 $ 8,816 58 $ 8,116 42 $ 6,212 48 $ 5,551 54 $ 7,080 72 $ 9,826 48 $ 6,129 40 $ 5,094 26 $ 3,568 28 $ 3,738 38 $ 5,332 28 $ 3,286 56 $ 6,664 48 $ 5,990 54 $ 7,093 32 $ 3,975 72 $ 9,046 40 $ 4,906 38 $ 5,324 14 $ 2,734 64 $ 8,138 42 $ 5,376 58 $ 7,763 46$ 5,964
Explanation / Answer
Output from the excel linear regression:
We can find the model's standard error =671.546
=> standard error= standard deviation/sqrt(n)
=>standard deviation = standard error*sqrt(n)
=>SD = 671.546 * sqrt(60) = 5201.77
Now we also have the mean of y = 5801.18
90% CI for average cost of this order = (5801.18 -1.645*5201.77, 5801.18 +1.645*5201.77) = (-2755.73,14358)
For 80 motors, the predicted value of y = 10134.648501563
So 90% confidence interval = (10134.648501563 - 1.645*5201.77 ,10134.648501563 + 1.645*5201.77 ) = (1577.73,18691.56)
SUMMARY OUTPUT Regression Statistics Multiple R 0.945003956 R Square 0.893032478 Adjusted R Square 0.890803988 Standard Error 671.5460064 Observations 50 ANOVA df SS MS F Significance F Regression 1 180720781.5 180720781.5 400.734335 6.09026E-25 Residual 48 21646753.86 450974.0387 Total 49 202367535.4 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 297.0355582 290.894665 1.021110367 0.312321219 -287.8473661 881.9184825 -287.8473661 881.9184825 Order Size 122.9701618 6.142872018 20.01834996 6.09026E-25 110.6190898 135.3212338 110.6190898 135.3212338Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.