Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Suppose the simple linear regression model describes the following data: X = {10

ID: 3173048 • Letter: S

Question

Suppose the simple linear regression model describes the following data:

X = {10, 8, 6, 11, 4, 12} Y = {26, 25, 24, 14, 13, 34}

What is the value for S ?

What is the value for S^2 ?

At a used dealership, let X be an independent variable representing the age in years of a motorcycle and Y be the dependent variable representing the selling price of used motorcycle. The data is now given to you:

X = {5, 10, 12, 14, 15} Y = {500, 400, 300, 200, 100}

What is the value for S ?

What is the value for S^2 ?

Find the coefficient of correlation...

Find the coefficient of determination...

Explanation / Answer

Result:

Suppose the simple linear regression model describes the following data:

X = {10, 8, 6, 11, 4, 12} Y = {26, 25, 24, 14, 13, 34}

What is the value for S ? =7.655

What is the value for S^2 ? = 58.6018

Regression Analysis

0.257

n

6

r

0.507

k

1

Std. Error

7.655

Dep. Var.

y

ANOVA table

Source

SS

df

MS

F

p-value

Regression

80.9263

1  

80.9263

1.38

.3051

Residual

234.4070

4  

58.6018

Total

315.3333

5  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=4)

p-value

95% lower

95% upper

Intercept

11.5719

9.9450

1.164

.3093

-16.0399

39.1837

x

1.3053

1.1107

1.175

.3051

-1.7786

4.3891

At a used dealership, let X be an independent variable representing the age in years of a motorcycle and Y be the dependent variable representing the selling price of used motorcycle. The data is now given to you:

X = {5, 10, 12, 14, 15} Y = {500, 400, 300, 200, 100}

What is the value for S ? =52.537

What is the value for S^2 ? = 2760.0849

Find the coefficient of correlation...= -0.958

Find the coefficient of determination... 0.917

Regression Analysis

0.917

n

5

r

-0.958

k

1

Std. Error

52.537

Dep. Var.

y

ANOVA table

Source

SS

df

MS

F

p-value

Regression

91,719.7452

1  

91,719.7452

33.23

.0104

Residual

8,280.2548

3  

2,760.0849

Total

100,000.0000

4  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=3)

p-value

95% lower

95% upper

Intercept

728.0255

77.8791

9.348

.0026

480.1794

975.8715

x

-38.2166

6.6295

-5.765

.0104

-59.3146

-17.1185

Regression Analysis

0.257

n

6

r

0.507

k

1

Std. Error

7.655

Dep. Var.

y

ANOVA table

Source

SS

df

MS

F

p-value

Regression

80.9263

1  

80.9263

1.38

.3051

Residual

234.4070

4  

58.6018

Total

315.3333

5  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=4)

p-value

95% lower

95% upper

Intercept

11.5719

9.9450

1.164

.3093

-16.0399

39.1837

x

1.3053

1.1107

1.175

.3051

-1.7786

4.3891

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote