Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

back dicate use. everything you write dow silouu B such Remember, Recall Table X

ID: 3173648 • Letter: B

Question

back dicate use. everything you write dow silouu B such Remember, Recall Table XII (text) to find the following probabilities, related to a particular binomial distribution. each that "X" denotes the number of 'successes' out of n trials; 'p' is the probability of "success' on a tri A. If n 12 and p 075, find: POX 10) POX S 8) B. If n 20 and p 075, find: POX 217) i) POX S 13) II. Use Table ll in the text to find the area under the standard normal curve described as follows. A. to the left of z 1.15 B. to the right of z 0.86 C. the right of z 1.10 D. between z 0.55 and z 1.55 E. outside the interval -1.38

Explanation / Answer

I. A) n = 12, p = 0.75

i) P(X > 10)

= P(X = 10) + P(X = 11) + P(X = 12)

= 0.232 + 0.127 + 0.032 (From table)

= 0.391

ii) P(X < 8)

= 1 - P(X > 8)

= 1 - [P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12)]

=1 - [0.258 + 0.232 + 0.127 + 0.032] (From table)

= 0.351

B) n = 20, p = 0.75

i) P(X > 17)

= P(X = 17) + P(X = 18) + P(X = 19) + P(X = 20)

= 0.134 + 0.067 + 0.021 + 0.003

= 0.225

ii) P(X < 13)

= 1 - P(X > 13)

= 1 - [P(X = 14) + P(X = 15) + P(X = 16) + P(X = 17) + P(X = 18) + P(X = 19) + P(X = 20)]

= 1 - (0.169 + 0.202 + 0.190 + 0.134 + 0.067 + 0.021 + 0.003)

= 0.214

II. From z table,

A) P(z < -1.15) = 0.1251

B) P(z > 0.86) = P(z < - 0.86) (By Symmetry)

So,

P(z > 0.86) = 0.1949

C) P(z > -1.10) = P(z < 1.10) (By Symmetry)

So,

P(z > -1.10) = 0.8643

D) P(0.55 < z < 1.55)

= P(z < 1.55) - P(z < 0.55)

= 0.9394 - 0.7088

= 0.2306

E) P(Outside the interval -1.38 < z < 1.38)

= 1 - P(-1.38 < z < 1.38)

= 1 - [P(z < 1.38) - P(z < - 1.38)]

= 1 - [0.9162 - 0.0838]

= 0.1676

III. a) We need to find k such that

P(-k < z < k) = 0.82

P(z < k) - P(z < -k) = 0.82

By using symmetry,

P(z < k) = P(z > -k) = 1 - P(z < -k)

So,

1 - 2*P(z < -k) = 0.82

2*P(z < -k) = 1 - 0.82

P(z < -k) = 0.09

From table,

P(z < -1.34) = 0.09

So,

k = 1.34

P(-1.34 < z < 1.34) = 0.82

b) We need to find k such that

P(-k < z < k) = 0.93

P(z < k) - P(z < -k) = 0.93

By using symmetry,

P(z < k) = P(z > -k) = 1 - P(z < -k)

So,

1 - 2*P(z < -k) = 0.93

2*P(z < -k) = 1 - 0.93

P(z < -k) = 0.035

From table,

P(z < -1.81) = 0.09

So,

k = 1.81

P(-1.81 < z < 1.81) = 0.93