Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

14 Question 5 The manager of Colonial Furniture has been reviewing weekly advert

ID: 3178281 • Letter: 1

Question

14 Question 5 The manager of Colonial Furniture has been reviewing weekly advertising expenditures. During the past 6 months, all advertisements for the store have appeared in the local newspaper. The number of ads per week has varied from one to seven. The store's sales staff has been tracking the number of customers who enter the store each week. The number of ads and the number of customers per week for the past 26 weeks were recorded. The manager believes that the higher the number of ads the higher the number of customers that arrive at his store. a. Create a suitable table in Excel that will help you calculate a and b for an estimated regression of the form a b X, b. Create another table in Excel that will help you calculate the residuals and, subsequently, the R- squared value for the model. Based on the R-squared value, does the estimated regression provide a good fit of the data?

Explanation / Answer

Question 5

Part a

Here, we have to find the values for a and b for the regression equation. The formula for a and b is given as below:

Coefficient b = r*(Sy/Sx)

And a = Ybar – b*Xbar

So, we have to find mean for X, mean for Y, SD for X, SD for Y, correlation coefficient for X and Y. The calculation table along with all values is given as below:

No.

X

Y

X^2

Y^2

XY

(X - Xbar)^2

(Y - Ybar)^2

1

5

353

25

124609

1765

0.782543698

1011.729779

2

6

319

36

101761

1914

3.551773698

4330.653379

3

3

440

9

193600

1320

1.244083698

3046.189979

4

2

332

4

110224

664

4.474853698

2788.653179

5

4

172

16

29584

688

0.013313698

45287.11718

6

2

331

4

109561

662

4.474853698

2895.268579

7

4

344

16

118336

1376

0.013313698

1665.268379

8

2

483

4

233289

966

4.474853698

9641.727779

9

4

329

16

108241

1316

0.013313698

3114.499379

10

2

532

4

283024

1064

4.474853698

21665.57318

11

7

496

49

246016

3472

8.321003698

12363.72758

12

5

393

25

154449

1965

0.782543698

67.11377929

13

4

376

16

141376

1504

0.013313698

77.57557929

14

7

372

49

138384

2604

8.321003698

164.0371793

15

2

512

4

262144

1024

4.474853698

16177.88118

16

5

254

25

64516

1270

0.782543698

17110.65438

17

5

459

25

210681

2295

0.782543698

5504.497379

18

2

153

4

23409

306

4.474853698

53734.80978

19

1

426

1

181476

426

9.705623698

1696.805579

20

6

566

36

320356

3396

3.551773698

32830.64958

21

6

596

36

355216

3576

3.551773698

44602.18758

22

5

395

25

156025

1975

0.782543698

103.8829793

23

6

676

36

456976

4056

3.551773698

84792.95558

24

3

194

9

37636

582

1.244083698

36407.57838

25

2

135

4

18225

270

4.474853698

62403.88698

26

7

367

49

134689

2569

8.321003698

317.1141793

Total

107

10005

527

4313803

43025

86.65384615

463802.0385

Mean

4.115385

384.8077

Var

3.466153846

18552.08154

SD

1.861761

136.206

SD

1.861760953

136.2060261

r

0.291909

Mean = Total sum / total number of observations

Xbar = 107/26 = 4.115385

Ybar = 10005/26 = 384.8077

Var = (X – Xbar)^2/(n – 1)

Here, n – 1 = 26 – 1 = 25

Var(X) = 86.65384615/25 = 3.466153846

Sx = sqrt(3.466153846) = 1.861760953

Var(Y) = 463802.0385/25 = 18552.08154

Sy = sqrt(18552.08154) = 136.2060261

Correlation coefficient = r = 0.291909

b = r*(Sy/Sx) = 0.291909*(136.2060261/1.861760953) = 21.356

a = Ybar – b*Xbar = 384.8077 - 21.356*4.115385 = 296.9195

Regression equation is given as below:

Y = a + b*X

Y = 296.9195 + 21.356*X

Number of customers = 296.9195 + 21.356*Number of ads

Part b

Here, we have to find out residuals. The formula for residual is given as below:

Residual = Y - Yestimated

The table for residuals is given as below:

Observation

Y

Predicted Y

Residuals

1

353

403.6995118

-50.69951176

2

319

425.0554816

-106.0554816

3

440

360.9875721

79.01242787

4

332

339.6316023

-7.631602308

5

172

382.3435419

-210.3435419

6

331

339.6316023

-8.631602308

7

344

382.3435419

-38.34354194

8

483

339.6316023

143.3683977

9

329

382.3435419

-53.34354194

10

532

339.6316023

192.3683977

11

496

446.4114514

49.5885486

12

393

403.6995118

-10.69951176

13

376

382.3435419

-6.343541944

14

372

446.4114514

-74.4114514

15

512

339.6316023

172.3683977

16

254

403.6995118

-149.6995118

17

459

403.6995118

55.30048824

18

153

339.6316023

-186.6316023

19

426

318.2756325

107.7243675

20

566

425.0554816

140.9445184

21

596

425.0554816

170.9445184

22

395

403.6995118

-8.699511762

23

676

425.0554816

250.9445184

24

194

360.9875721

-166.9875721

25

135

339.6316023

-204.6316023

26

367

446.4114514

-79.4114514

Total

0.0000

We are given

Correlation coefficient = r = 0.291909

So, coefficient of determination = r^2 = 0.291909*0.291909 = 0.085211

This means only 8.5% of the variation in the dependent variable number of customers is explained by the independent variable number of ads. So, this regression does not provide a good fit for the data.

No.

X

Y

X^2

Y^2

XY

(X - Xbar)^2

(Y - Ybar)^2

1

5

353

25

124609

1765

0.782543698

1011.729779

2

6

319

36

101761

1914

3.551773698

4330.653379

3

3

440

9

193600

1320

1.244083698

3046.189979

4

2

332

4

110224

664

4.474853698

2788.653179

5

4

172

16

29584

688

0.013313698

45287.11718

6

2

331

4

109561

662

4.474853698

2895.268579

7

4

344

16

118336

1376

0.013313698

1665.268379

8

2

483

4

233289

966

4.474853698

9641.727779

9

4

329

16

108241

1316

0.013313698

3114.499379

10

2

532

4

283024

1064

4.474853698

21665.57318

11

7

496

49

246016

3472

8.321003698

12363.72758

12

5

393

25

154449

1965

0.782543698

67.11377929

13

4

376

16

141376

1504

0.013313698

77.57557929

14

7

372

49

138384

2604

8.321003698

164.0371793

15

2

512

4

262144

1024

4.474853698

16177.88118

16

5

254

25

64516

1270

0.782543698

17110.65438

17

5

459

25

210681

2295

0.782543698

5504.497379

18

2

153

4

23409

306

4.474853698

53734.80978

19

1

426

1

181476

426

9.705623698

1696.805579

20

6

566

36

320356

3396

3.551773698

32830.64958

21

6

596

36

355216

3576

3.551773698

44602.18758

22

5

395

25

156025

1975

0.782543698

103.8829793

23

6

676

36

456976

4056

3.551773698

84792.95558

24

3

194

9

37636

582

1.244083698

36407.57838

25

2

135

4

18225

270

4.474853698

62403.88698

26

7

367

49

134689

2569

8.321003698

317.1141793

Total

107

10005

527

4313803

43025

86.65384615

463802.0385

Mean

4.115385

384.8077

Var

3.466153846

18552.08154

SD

1.861761

136.206

SD

1.861760953

136.2060261

r

0.291909

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote