Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

3 Find the mean, median, mode, and standard deviation of the selling price and s

ID: 3179394 • Letter: 3

Question

3   

Find the mean, median, mode, and standard deviation of the selling price and square feet. Write a brief summary explaining the price and square feet distributions of the area of homes.

Price Bedrooms Square Feet Pool Distance Township Garage Baths 245,400 2 2100 0 12 1 1 2 221,100 3 2300 0 18 1 0 1.5 232,200 3 1900 0 16 1 1 1.5 198,300 4 2100 0 19 1 1 1.5 192,600 6 2200 0 14 1 0 2 147,400 6 1700 0 12 1 0 2 224,000 3 1900 0 6 1 1 2 220,900 2 2300 0 12 1 1 2 199,000 3 2500 0 18 1 0 1.5 139,900 2 2100 1 28 1 0 1.5 224,800 3 2200 1 17 1 1 2.5 216,800 3 2200 1 15 1 1 2 176,000 4 2200 1 15 1 1 2 189,400 4 2200 1 24 1 1 2 125,900 2 2400 1 28 1 0 1.5 192,900 4 1900 0 14 2 1 2.5 166,200 3 2000 0 16 2 1 2 307,800 3 2400 0 21 2 1 3 209,700 5 2200 0 13 2 1 2 207,500 3 2100 0 10 2 0 2 209,700 4 2200 0 19 2 1 2 173,600 4 2100 0 14 2 1 2.5 188,300 6 2100 0 14 2 1 2.5 213,600 2 2200 1 16 2 0 2.5 271,800 2 2100 1 9 2 1 2.5 281,300 3 2100 1 16 2 1 2 247,700 5 2400 1 16 2 1 2 216,000 4 2300 1 19 2 0 2 273,200 5 2200 1 16 2 1 3 251,400 3 1900 1 12 2 1 2 154,300 2 2000 1 13 2 0 2 294,000 2 2100 1 13 2 1 2.5 192,200 2 2400 1 16 2 0 2.5 244,600 2 2300 1 9 2 1 2.5 253,200 3 2300 1 16 2 1 2 172,700 4 2200 0 16 3 0 2 206,000 3 2100 0 9 3 0 1.5 166,500 3 1600 0 19 3 0 2.5 190,900 3 2200 0 18 3 1 2 254,300 4 2500 0 15 3 1 2 176,300 2 2000 0 17 3 0 2 155,400 4 2400 0 16 3 0 2 242,100 3 2300 1 12 3 0 2 327,200 6 2500 1 15 3 1 2 292,400 4 2100 1 14 3 1 2 246,100 4 2100 1 18 3 1 2 194,400 2 2300 1 11 3 0 2 233,000 3 2200 1 14 3 1 1.5 234,000 2 1700 1 19 3 1 2 199,800 3 2100 1 19 3 1 2 236,400 5 2200 1 20 3 1 2 172,400 3 2200 1 23 3 0 2 246,000 6 2300 1 7 3 1 3 312,100 7 2400 1 13 3 1 3 289,800 6 2000 1 21 3 1 3 217,800 3 2500 1 12 3 0 2 294,500 6 2700 1 15 3 1 2 263,200 4 2300 1 14 3 1 2 221,500 4 2300 1 18 3 1 2 175,000 2 2500 1 11 3 0 2 207,500 5 2300 0 21 4 0 2.5 198,900 3 2200 0 10 4 1 2 209,300 6 1900 0 15 4 1 2 182,700 4 2000 0 14 4 0 2.5 205,100 3 2000 0 20 4 0 2 175,600 4 2300 0 24 4 1 2 171,600 3 2000 0 16 4 0 2 269,900 5 2200 0 11 4 1 2.5 186,700 5 2500 0 21 4 0 2.5 179,000 3 2400 0 10 4 1 2 188,300 6 2100 0 15 4 1 2 182,400 4 2100 1 19 4 0 2 266,600 4 2400 1 13 4 1 2 209,000 2 1700 1 8 4 1 1.5 270,800 6 2500 1 7 4 1 2 252,300 4 2600 1 8 4 1 2 345,300 8 2600 1 9 4 1 2 187,000 2 1900 1 26 4 0 2 257,200 2 2100 1 9 4 1 2 294,300 7 2400 1 8 4 1 2 125,000 2 1900 1 18 4 0 1.5 164,100 4 2300 1 19 4 0 2 240,000 4 2600 1 13 4 1 2 188,100 2 1900 1 8 4 1 1.5 243,700 6 2700 1 7 4 1 2 227,100 4 2900 1 8 4 1 2 310,800 8 2900 1 9 4 1 2 179,000 3 2400 1 8 4 1 2 173,600 4 2100 1 9 4 1 2 263,100 4 2300 0 17 5 1 2 173,100 2 2200 0 21 5 1 1.5 236,800 4 2600 0 17 5 1 2 209,300 5 2100 1 20 5 0 1.5 326,300 6 2100 1 11 5 1 3 180,400 2 2000 1 11 5 0 2 207,100 2 2000 1 11 5 1 2 177,100 2 1900 1 10 5 1 2 312,100 6 2600 1 7 5 1 2.5 269,200 5 2200 1 8 5 1 3 228,400 3 2300 1 17 5 1 1.5 222,100 2 2100 1 9 5 1 2 188,300 5 2300 1 20 5 0 1.5 293,700 6 2400 1 11 5 1 3 227,100 4 2900 1 20 5 0 1.5 188,300 5 2300 1 11 5 1

3   

Explanation / Answer

For Selling price

Mean is find as below

The mean of a data set is the sum of the terms divided by the total number of terms. Using math notation we have:

Mean=Sum of terms/Number of terms =23215800/105

The median is the middle number in a sorted list of numbers. So, to find the median, we need to place the numbers in value order and find the middle number.

Ordering the data from least to greatest, we get:

125000   125900   139900   147400   154300   155400   164100   166200   166500   171600   172400   172700   173100   173600   173600   175000   175600   176000   176300   177100   179000   179000   180400   182400   182700   186700   187000   188100   188300   188300   188300   188300   189400   190900   192200   192600   192900   194400   198300   198900   199000   199800   205100   206000   207100   207500   207500   209000   209300   209300   209700   209700   213600   216000   216800   217800   220900   221100   221500   222100   224000   224800   227100   227100   228400   232200   233000   234000   236400   236800   240000   242100   243700   244600   245400   246000   246100   247700   251400   252300   253200   254300   257200   263100   263200   266600   269200   269900   270800   271800   273200   281300   289800   292400   293700   294000   294300   294500   307800   310800   312100   312100   326300   327200   345300   

So, the median is 213600 .

The mode of a set of data is the value in the set that occurs most often.

Ordering the data from least to greatest, we get:

125000   125900   139900   147400   154300   155400   164100   166200   166500   171600   172400   172700   173100   173600   173600   175000   175600   176000   176300   177100   179000   179000   180400   182400   182700   186700   187000   188100   188300   188300   188300   188300   189400   190900   192200   192600   192900   194400   198300   198900   199000   199800   205100   206000   207100   207500   207500   209000   209300   209300   209700   209700   213600   216000   216800   217800   220900   221100   221500   222100   224000   224800   227100   227100   228400   232200   233000   234000   236400   236800   240000   242100   243700   244600   245400   246000   246100   247700   251400   252300   253200   254300   257200   263100   263200   266600   269200   269900   270800   271800   273200   281300   289800   292400   293700   294000   294300   294500   307800   310800   312100   312100   326300   327200   345300   

We see that the mode is 188300 .

To find standard deviation we use the following formula

=((xiX¯)^2/n1)

Create the following table.

Find the sum of numbers in the last column to get.

(xiX¯)^2=230767589143

Calculate using the above formula.

=((xiX¯)^2/n1)=(230767589143/1051)47105.4044

Now we will find for square feet

The mean of a data set is the sum of the terms divided by the total number of terms. Using math notation we have:

Mean=Sum of terms/Number of terms=233500/105

The median is the middle number in a sorted list of numbers. So, to find the median, we need to place the numbers in value order and find the middle number.

Ordering the data from least to greatest, we get:

1600   1700   1700   1700   1900   1900   1900   1900   1900   1900   1900   1900   1900   2000   2000   2000   2000   2000   2000   2000   2000   2000   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2400   2400   2400   2400   2400   2400   2400   2400   2400   2400   2400   2500   2500   2500   2500   2500   2500   2500   2600   2600   2600   2600   2600   2700   2700   2900   2900   2900   

So, the median is 2200 .

The mode of a set of data is the value in the set that occurs most often.

Ordering the data from least to greatest, we get:

1600   1700   1700   1700   1900   1900   1900   1900   1900   1900   1900   1900   1900   2000   2000   2000   2000   2000   2000   2000   2000   2000   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2100   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2200   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2300   2400   2400   2400   2400   2400   2400   2400   2400   2400   2400   2400   2500   2500   2500   2500   2500   2500   2500   2600   2600   2600   2600   2600   2700   2700   2900   2900   2900   

We see that the mode is 2100 .

To find standard deviation we use the following formula

=((xiX¯)^2/n1)

Create the following table.

Find the sum of numbers in the last column to get.

(xiX¯)2=6430476.1905

Calculate using the above formula.

=((xiX¯)^2/n1)=(6430476.1905/1051)=248.6594

data data-mean (data - mean)2 245400 24297.1429 590351153.103 221100 -2.85709999999 8.16302040996 232200 11097.1429 123146580.543 198300 -22802.8571 519970291.923 192600 -28502.8571 812412862.863 147400 -73702.8571 5432111144.7 224000 2897.1429 8393436.98302 220900 -202.8571 41151.0030204 199000 -22102.8571 488536291.983 139900 -81202.8571 6593904001.2 224800 3697.1429 13668865.623 216800 -4302.8571 18514579.223 176000 -45102.8571 2034267718.58 189400 -31702.8571 1005071148.3 125900 -95202.8571 9063584000 192900 -28202.8571 795401148.603 166200 -54902.8571 3014323717.74 307800 86697.1429 7516394587.02 209700 -11402.8571 130025150.043 207500 -13602.8571 185037721.283 209700 -11402.8571 130025150.043 173600 -47502.8571 2256521432.66 188300 -32802.8571 1076027433.92 213600 -7502.8571 56292864.663 271800 50697.1429 2570200298.22 281300 60197.1429 3623696013.32 247700 26597.1429 707408010.443 216000 -5102.8571 26039150.583 273200 52097.1429 2714112298.34 251400 30297.1429 917916867.903 154300 -66802.8571 4462621716.72 294000 72897.1429 5313993442.98 192200 -28902.8571 835375148.543 244600 23497.1429 552115724.463 253200 32097.1429 1030226582.34 172700 -48402.8571 2342836575.44 206000 -15102.8571 228096292.583 166500 -54602.8571 2981472003.48 190900 -30202.8571 912212577.003 254300 33197.1429 1102050296.72 176300 -44802.8571 2007296004.32 155400 -65702.8571 4316865431.1 242100 20997.1429 440880009.963 327200 106097.1429 11256603731.5 292400 71297.1429 5083282585.7 246100 24997.1429 624857153.163 194400 -26702.8571 713042577.303 233000 11897.1429 141542009.183 234000 12897.1429 166336294.983 199800 -21302.8571 453811720.623