3 Find the mean, median, mode, and standard deviation of the selling price and s
ID: 3179394 • Letter: 3
Question
3
Find the mean, median, mode, and standard deviation of the selling price and square feet. Write a brief summary explaining the price and square feet distributions of the area of homes.
Price Bedrooms Square Feet Pool Distance Township Garage Baths 245,400 2 2100 0 12 1 1 2 221,100 3 2300 0 18 1 0 1.5 232,200 3 1900 0 16 1 1 1.5 198,300 4 2100 0 19 1 1 1.5 192,600 6 2200 0 14 1 0 2 147,400 6 1700 0 12 1 0 2 224,000 3 1900 0 6 1 1 2 220,900 2 2300 0 12 1 1 2 199,000 3 2500 0 18 1 0 1.5 139,900 2 2100 1 28 1 0 1.5 224,800 3 2200 1 17 1 1 2.5 216,800 3 2200 1 15 1 1 2 176,000 4 2200 1 15 1 1 2 189,400 4 2200 1 24 1 1 2 125,900 2 2400 1 28 1 0 1.5 192,900 4 1900 0 14 2 1 2.5 166,200 3 2000 0 16 2 1 2 307,800 3 2400 0 21 2 1 3 209,700 5 2200 0 13 2 1 2 207,500 3 2100 0 10 2 0 2 209,700 4 2200 0 19 2 1 2 173,600 4 2100 0 14 2 1 2.5 188,300 6 2100 0 14 2 1 2.5 213,600 2 2200 1 16 2 0 2.5 271,800 2 2100 1 9 2 1 2.5 281,300 3 2100 1 16 2 1 2 247,700 5 2400 1 16 2 1 2 216,000 4 2300 1 19 2 0 2 273,200 5 2200 1 16 2 1 3 251,400 3 1900 1 12 2 1 2 154,300 2 2000 1 13 2 0 2 294,000 2 2100 1 13 2 1 2.5 192,200 2 2400 1 16 2 0 2.5 244,600 2 2300 1 9 2 1 2.5 253,200 3 2300 1 16 2 1 2 172,700 4 2200 0 16 3 0 2 206,000 3 2100 0 9 3 0 1.5 166,500 3 1600 0 19 3 0 2.5 190,900 3 2200 0 18 3 1 2 254,300 4 2500 0 15 3 1 2 176,300 2 2000 0 17 3 0 2 155,400 4 2400 0 16 3 0 2 242,100 3 2300 1 12 3 0 2 327,200 6 2500 1 15 3 1 2 292,400 4 2100 1 14 3 1 2 246,100 4 2100 1 18 3 1 2 194,400 2 2300 1 11 3 0 2 233,000 3 2200 1 14 3 1 1.5 234,000 2 1700 1 19 3 1 2 199,800 3 2100 1 19 3 1 2 236,400 5 2200 1 20 3 1 2 172,400 3 2200 1 23 3 0 2 246,000 6 2300 1 7 3 1 3 312,100 7 2400 1 13 3 1 3 289,800 6 2000 1 21 3 1 3 217,800 3 2500 1 12 3 0 2 294,500 6 2700 1 15 3 1 2 263,200 4 2300 1 14 3 1 2 221,500 4 2300 1 18 3 1 2 175,000 2 2500 1 11 3 0 2 207,500 5 2300 0 21 4 0 2.5 198,900 3 2200 0 10 4 1 2 209,300 6 1900 0 15 4 1 2 182,700 4 2000 0 14 4 0 2.5 205,100 3 2000 0 20 4 0 2 175,600 4 2300 0 24 4 1 2 171,600 3 2000 0 16 4 0 2 269,900 5 2200 0 11 4 1 2.5 186,700 5 2500 0 21 4 0 2.5 179,000 3 2400 0 10 4 1 2 188,300 6 2100 0 15 4 1 2 182,400 4 2100 1 19 4 0 2 266,600 4 2400 1 13 4 1 2 209,000 2 1700 1 8 4 1 1.5 270,800 6 2500 1 7 4 1 2 252,300 4 2600 1 8 4 1 2 345,300 8 2600 1 9 4 1 2 187,000 2 1900 1 26 4 0 2 257,200 2 2100 1 9 4 1 2 294,300 7 2400 1 8 4 1 2 125,000 2 1900 1 18 4 0 1.5 164,100 4 2300 1 19 4 0 2 240,000 4 2600 1 13 4 1 2 188,100 2 1900 1 8 4 1 1.5 243,700 6 2700 1 7 4 1 2 227,100 4 2900 1 8 4 1 2 310,800 8 2900 1 9 4 1 2 179,000 3 2400 1 8 4 1 2 173,600 4 2100 1 9 4 1 2 263,100 4 2300 0 17 5 1 2 173,100 2 2200 0 21 5 1 1.5 236,800 4 2600 0 17 5 1 2 209,300 5 2100 1 20 5 0 1.5 326,300 6 2100 1 11 5 1 3 180,400 2 2000 1 11 5 0 2 207,100 2 2000 1 11 5 1 2 177,100 2 1900 1 10 5 1 2 312,100 6 2600 1 7 5 1 2.5 269,200 5 2200 1 8 5 1 3 228,400 3 2300 1 17 5 1 1.5 222,100 2 2100 1 9 5 1 2 188,300 5 2300 1 20 5 0 1.5 293,700 6 2400 1 11 5 1 3 227,100 4 2900 1 20 5 0 1.5 188,300 5 2300 1 11 5 13
Explanation / Answer
For Selling price
Mean is find as below
The mean of a data set is the sum of the terms divided by the total number of terms. Using math notation we have:
Mean=Sum of terms/Number of terms =23215800/105
The median is the middle number in a sorted list of numbers. So, to find the median, we need to place the numbers in value order and find the middle number.
Ordering the data from least to greatest, we get:
125000 125900 139900 147400 154300 155400 164100 166200 166500 171600 172400 172700 173100 173600 173600 175000 175600 176000 176300 177100 179000 179000 180400 182400 182700 186700 187000 188100 188300 188300 188300 188300 189400 190900 192200 192600 192900 194400 198300 198900 199000 199800 205100 206000 207100 207500 207500 209000 209300 209300 209700 209700 213600 216000 216800 217800 220900 221100 221500 222100 224000 224800 227100 227100 228400 232200 233000 234000 236400 236800 240000 242100 243700 244600 245400 246000 246100 247700 251400 252300 253200 254300 257200 263100 263200 266600 269200 269900 270800 271800 273200 281300 289800 292400 293700 294000 294300 294500 307800 310800 312100 312100 326300 327200 345300
So, the median is 213600 .
The mode of a set of data is the value in the set that occurs most often.
Ordering the data from least to greatest, we get:
125000 125900 139900 147400 154300 155400 164100 166200 166500 171600 172400 172700 173100 173600 173600 175000 175600 176000 176300 177100 179000 179000 180400 182400 182700 186700 187000 188100 188300 188300 188300 188300 189400 190900 192200 192600 192900 194400 198300 198900 199000 199800 205100 206000 207100 207500 207500 209000 209300 209300 209700 209700 213600 216000 216800 217800 220900 221100 221500 222100 224000 224800 227100 227100 228400 232200 233000 234000 236400 236800 240000 242100 243700 244600 245400 246000 246100 247700 251400 252300 253200 254300 257200 263100 263200 266600 269200 269900 270800 271800 273200 281300 289800 292400 293700 294000 294300 294500 307800 310800 312100 312100 326300 327200 345300
We see that the mode is 188300 .
To find standard deviation we use the following formula
=((xiX¯)^2/n1)
Create the following table.
Find the sum of numbers in the last column to get.
(xiX¯)^2=230767589143
Calculate using the above formula.
=((xiX¯)^2/n1)=(230767589143/1051)47105.4044
Now we will find for square feet
The mean of a data set is the sum of the terms divided by the total number of terms. Using math notation we have:
Mean=Sum of terms/Number of terms=233500/105
The median is the middle number in a sorted list of numbers. So, to find the median, we need to place the numbers in value order and find the middle number.
Ordering the data from least to greatest, we get:
1600 1700 1700 1700 1900 1900 1900 1900 1900 1900 1900 1900 1900 2000 2000 2000 2000 2000 2000 2000 2000 2000 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2500 2500 2500 2500 2500 2500 2500 2600 2600 2600 2600 2600 2700 2700 2900 2900 2900
So, the median is 2200 .
The mode of a set of data is the value in the set that occurs most often.
Ordering the data from least to greatest, we get:
1600 1700 1700 1700 1900 1900 1900 1900 1900 1900 1900 1900 1900 2000 2000 2000 2000 2000 2000 2000 2000 2000 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2500 2500 2500 2500 2500 2500 2500 2600 2600 2600 2600 2600 2700 2700 2900 2900 2900
We see that the mode is 2100 .
To find standard deviation we use the following formula
=((xiX¯)^2/n1)
Create the following table.
Find the sum of numbers in the last column to get.
(xiX¯)2=6430476.1905
Calculate using the above formula.
=((xiX¯)^2/n1)=(6430476.1905/1051)=248.6594
data data-mean (data - mean)2 245400 24297.1429 590351153.103 221100 -2.85709999999 8.16302040996 232200 11097.1429 123146580.543 198300 -22802.8571 519970291.923 192600 -28502.8571 812412862.863 147400 -73702.8571 5432111144.7 224000 2897.1429 8393436.98302 220900 -202.8571 41151.0030204 199000 -22102.8571 488536291.983 139900 -81202.8571 6593904001.2 224800 3697.1429 13668865.623 216800 -4302.8571 18514579.223 176000 -45102.8571 2034267718.58 189400 -31702.8571 1005071148.3 125900 -95202.8571 9063584000 192900 -28202.8571 795401148.603 166200 -54902.8571 3014323717.74 307800 86697.1429 7516394587.02 209700 -11402.8571 130025150.043 207500 -13602.8571 185037721.283 209700 -11402.8571 130025150.043 173600 -47502.8571 2256521432.66 188300 -32802.8571 1076027433.92 213600 -7502.8571 56292864.663 271800 50697.1429 2570200298.22 281300 60197.1429 3623696013.32 247700 26597.1429 707408010.443 216000 -5102.8571 26039150.583 273200 52097.1429 2714112298.34 251400 30297.1429 917916867.903 154300 -66802.8571 4462621716.72 294000 72897.1429 5313993442.98 192200 -28902.8571 835375148.543 244600 23497.1429 552115724.463 253200 32097.1429 1030226582.34 172700 -48402.8571 2342836575.44 206000 -15102.8571 228096292.583 166500 -54602.8571 2981472003.48 190900 -30202.8571 912212577.003 254300 33197.1429 1102050296.72 176300 -44802.8571 2007296004.32 155400 -65702.8571 4316865431.1 242100 20997.1429 440880009.963 327200 106097.1429 11256603731.5 292400 71297.1429 5083282585.7 246100 24997.1429 624857153.163 194400 -26702.8571 713042577.303 233000 11897.1429 141542009.183 234000 12897.1429 166336294.983 199800 -21302.8571 453811720.623Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.