A chemical engineer is investigating the effect of process operating temperature
ID: 3182026 • Letter: A
Question
A chemical engineer is investigating the effect of process operating temperature on product yield.The study results in the following data:
190
125.30
Correlation Coefficient: r=0.9598
1. The slope of the fitted regression line is closest to:
a. 213.3626
b. -13.4560
c. 199.5780
d. 0.7346
e. 76.6374
2. The intercept of the fitted regression line is closest to:
a. -13.4560
b. 213.3626
c. 0.7346
d. 199.5780
3. The yield predicted by the regression model for a temperature of 150 degrees is closest to:
a. 96.734
b. -2017.6654
c. 100.407
d. 82.042
e. 93.061
4. The residual error for a temperature of 150 degrees is closest to:
a. -89.04
b. -7.6940
c. 89.04
d. 7.6940
e. 18446744073709551611
f. 91
5. If the yield were measured in ounces instead of grams (note that 1 gram is 0.35274 ounces), the slope would change by a factor of:
a. 0.35274
b. 1/0.35274
c. would not change
d. None of the above
6. If the yield were measured in ounces instead of grams (note that 1 gram is 0.35274 ounces), the correlation coefficient would increase by a factor of:
a. 0.35274
b. 1/0.35274
c. would not change
d. None of the above
190
125.30
Explanation / Answer
1) D .Slope = r * Sy / Sx = 0.9598 *23.17/30.27 = 0.7376 .
2)B
Average Y = 93.06, Average X = 145
93.06= 0.7376* 145+b So, b = -13.45
3) A
Yield = 0.7376*150 -13.45 = 96.73
4) B
Residual Error = Actual -Predicted = 89.04 96.73 = -7.6940
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.