Do it with MATLAB *A) For each of the h-values specified in the chart, use the t
ID: 3184544 • Letter: D
Question
Do it with MATLAB
*A) For each of the h-values specified in the chart, use the three-point centered-difference formula for the second derivative to approximate f"(0), where f(x) cos x, find a bound on the approximation error and compare with the actual error. 4. B) What is the order of the convergence of the approximation formula (linear, square, cubic, etc., i.e., if the h is decreased by ½, does the approximation get better by a factor of ½, ¼,1/8, etc.)? h exact approximationerr-exact-approximationbound on error 0.1 0.01 0.001Explanation / Answer
clc;
clear all;
f=@(x)cos(x);
ddf=@(x)-cos(x);
x=0;
%error bound is f^4(x)*h^2/12
h=[0.1 0.01 0.001]
for i=1:3
f_central(i)=(f(x+h(i))-2*f(x)+f(x-h(i)))/(h(i)^2);
end
error=abs(f_central-ddf(x));
disp('________________________________________________________________________')
disp('x central(x=0) exact error error bound')
disp('______________________________________________________________________________')
for i=1:3
fprintf('%f %15f %15f %15f %15f ',h(i),f_central(i), ddf(x), error(i), h(i)^2/12 )
end
h =
0.1000 0.0100 0.0010
________________________________________________________________________
x central(x=0) exact error error bound
______________________________________________________________________________
0.100000 -0.999167 -1.000000 0.000833 0.000833
0.010000 -0.999992 -1.000000 0.000008 0.000008
0.001000 -1.000000 -1.000000 0.000000 0.000000
>>
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.