Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Use Newton\'s method with the specified initial approximation x1 to find x3 1/3

ID: 3192331 • Letter: U

Question

Use Newton's method with the specified initial approximation x1 to find x3 1/3 x^3 + 1/2 x^2 + 7 = 0,

Explanation / Answer

(1/3) * x^3 + (1/2) * x^2 + 5 = 0 ======> f (x) = (1/3) * x^3 + (1/2) * x^2 + 5 f '(x) = x^2 + x lets start with X1 = -3 Xn+1 = Xn - [ f(x) / f '(x) ] Xn+1 = Xn - [ ((1/3) * X^3 + (1/2) * X^2 + 5) / (X^2 + X) ] ======> X1 = -3 X 2 = -3 - [ ((1/3) * (-3)^3 + (1/2) * (-3)^2 + 5) / ( (-3)^2 + (-3) ] ====> X2 = -3.083333333 X 3 = -3.083333333 - [ ((1/3) * (-3.083333333)^3 + (1/2) * (-3.083333333)^2 + 5) / ( (-3.083333333)^2 + (-3.083333333) ] ====> X3 = -3.080600601 X 4 = -3.080600601 - [ ((1/3) * (-3.080600601)^3 + (1/2) * (-3.080600601)^2 + 5) / ( (-3.080600601)^2 + (-3.080600601) ] ====> X4 = -3.080597592 X 5 = -3.080597592 - [ ((1/3) * (-3.080597592)^3 + (1/2) * (-3.080597592)^2 + 5) / ( (-3.080597592)^2 + (-3.080597592) ] ====> X5 = -3.080597592 The root is -3.08060

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Chat Now And Get Quote