Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The median absolute deviation, or MAD, is another measure of the spread of a dat

ID: 3203790 • Letter: T

Question

The median absolute deviation, or MAD, is another measure of the spread of a dataset. Here's how you find the MAD, given a dataset {x_i I = 1, n} Find the median q_0.5 Compute the quantities y_i = |x_i - q_0.5|, for i = 1.n. Defined this way, the y_i represent the magnitudes of the differences between the xi and the median. Order the y_i (in the notation from class, you'd be finding the {y_(i), i = 1, n} The median of the y_(i) is the MAD Given the dataset of 101 numbers {0, 1, 2, 3, ..., 97, 98, 99, 100} find the MAD Comment on how resistant of a measure the MAD is.

Explanation / Answer

Numbers (N)

Sorted numbers(N)

Median (M)

Dev ( Di = |Ni - M|)

Sorted Di

Median (L)

0

0

50

50

50

25

1

1

49

49

2

2

48

48

3

3

47

47

4

4

46

46

5

5

45

45

6

6

44

44

7

7

43

43

8

8

42

42

9

9

41

41

10

10

40

40

11

11

39

39

12

12

38

38

13

13

37

37

14

14

36

36

15

15

35

35

16

16

34

34

17

17

33

33

18

18

32

32

19

19

31

31

20

20

30

30

21

21

29

29

22

22

28

28

23

23

27

27

24

24

26

26

25

25

25

25

26

26

24

24

27

27

23

23

28

28

22

22

29

29

21

21

30

30

20

20

31

31

19

19

32

32

18

18

33

33

17

17

34

34

16

16

35

35

15

15

36

36

14

14

37

37

13

13

38

38

12

12

39

39

11

11

40

40

10

10

41

41

9

9

42

42

8

8

43

43

7

7

44

44

6

6

45

45

5

5

46

46

4

4

47

47

3

3

48

48

2

2

49

49

1

1

50

50

0

0

51

51

1

1

52

52

2

2

53

53

3

3

54

54

4

4

55

55

5

5

56

56

6

6

57

57

7

7

58

58

8

8

59

59

9

9

60

60

10

10

61

61

11

11

62

62

12

12

63

63

13

13

64

64

14

14

65

65

15

15

66

66

16

16

67

67

17

17

68

68

18

18

69

69

19

19

70

70

20

20

71

71

21

21

72

72

22

22

73

73

23

23

74

74

24

24

75

75

25

25

76

76

26

26

77

77

27

27

78

78

28

28

79

79

29

29

80

80

30

30

81

81

31

31

82

82

32

32

83

83

33

33

84

84

34

34

85

85

35

35

86

86

36

36

87

87

37

37

88

88

38

38

89

89

39

39

90

90

40

40

91

91

41

41

92

92

42

42

93

93

43

43

94

94

44

44

95

95

45

45

96

96

46

46

97

97

47

47

98

98

48

48

99

99

49

49

100

100

50

50

Numbers (N)

Sorted numbers(N)

Median (M)

Dev ( Di = |Ni - M|)

Sorted Di

Median (L)

0

0

50

50

50

25

1

1

49

49

2

2

48

48

3

3

47

47

4

4

46

46

5

5

45

45

6

6

44

44

7

7

43

43

8

8

42

42

9

9

41

41

10

10

40

40

11

11

39

39

12

12

38

38

13

13

37

37

14

14

36

36

15

15

35

35

16

16

34

34

17

17

33

33

18

18

32

32

19

19

31

31

20

20

30

30

21

21

29

29

22

22

28

28

23

23

27

27

24

24

26

26

25

25

25

25

26

26

24

24

27

27

23

23

28

28

22

22

29

29

21

21

30

30

20

20

31

31

19

19

32

32

18

18

33

33

17

17

34

34

16

16

35

35

15

15

36

36

14

14

37

37

13

13

38

38

12

12

39

39

11

11

40

40

10

10

41

41

9

9

42

42

8

8

43

43

7

7

44

44

6

6

45

45

5

5

46

46

4

4

47

47

3

3

48

48

2

2

49

49

1

1

50

50

0

0

51

51

1

1

52

52

2

2

53

53

3

3

54

54

4

4

55

55

5

5

56

56

6

6

57

57

7

7

58

58

8

8

59

59

9

9

60

60

10

10

61

61

11

11

62

62

12

12

63

63

13

13

64

64

14

14

65

65

15

15

66

66

16

16

67

67

17

17

68

68

18

18

69

69

19

19

70

70

20

20

71

71

21

21

72

72

22

22

73

73

23

23

74

74

24

24

75

75

25

25

76

76

26

26

77

77

27

27

78

78

28

28

79

79

29

29

80

80

30

30

81

81

31

31

82

82

32

32

83

83

33

33

84

84

34

34

85

85

35

35

86

86

36

36

87

87

37

37

88

88

38

38

89

89

39

39

90

90

40

40

91

91

41

41

92

92

42

42

93

93

43

43

94

94

44

44

95

95

45

45

96

96

46

46

97

97

47

47

98

98

48

48

99

99

49

49

100

100

50

50

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote