Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A forestry company experiments with the rate of growth of different types of tre

ID: 3204899 • Letter: A

Question

A forestry company experiments with the rate of growth of different types of trees. It has planted 48treesin one longline alongside a road. The trees are alternately of types A and B. After 2 years, the company wants to know the average height of all trees.

The length of all 48 trees can be found in the table below:

629 353 664 351 633 314 660 381 640 366 696 348 681 307 633 337 663 331 609 338 675 361 696 304 647 366 669 384 669 389 693 324 698 309 602 341 671 352 663 344 671 342 627 323 612 376 629 363

a. Compute the mean length and the standard deviation of all 48 trees.

b. Draw a simple random sample without replacement of size n = 8. Use the table with random numbers below. Work row-wise and use only the first two digits of each group of five digits. Compute the sample mean and the sample standard deviation 94830 56343 45319 85736 71418 47124 11027 15995 68274 45056 17838 77075 43361 69690 40430 74734 66769 26999 58469 75469 82789 17393 52499 87798 09954 02758 41015 87161 52600 94263 64429 42371 14248 93327 86923 12453 46224 85187 66357 14125 76370 72909 63535 42073 26337 96565 38496 28701 52074 21346

c. Draw a systematic sample of size 8. Use the value b = 3 as starting point. Compute the sample mean and the sample standard deviation.

d. Compare the results of exercises (b) and (c) with those of exercise. Explain observed differences and/or similarities.

Explanation / Answer

a)

x

xi-x

xi-x^2

629

128.29

16458.32

353

-147.71

21818.24

664

163.29

26663.62

351

-149.71

22413.08

633

132.29

17500.64

314

-186.71

34860.62

660

159.29

25373.3

381

-119.71

14330.48

640

139.29

19401.7

366

-134.71

18146.78

696

195.29

38138.18

348

-152.71

23320.34

681

180.29

32504.48

307

-193.71

37523.56

633

132.29

17500.64

337

-163.71

26800.96

663

162.29

26338.04

331

-169.71

28801.48

609

108.29

11726.72

338

-162.71

26474.54

675

174.29

30377

361

-139.71

19518.88

696

195.29

38138.18

304

-196.71

38694.82

647

146.29

21400.76

366

-134.71

18146.78

669

168.29

28321.52

384

-116.71

13621.22

669

168.29

28321.52

389

-111.71

12479.12

693

192.29

36975.44

324

-176.71

31226.42

698

197.29

38923.34

309

-191.71

36752.72

602

101.29

10259.66

341

-159.71

25507.28

671

170.29

28998.68

352

-148.71

22114.66

663

162.29

26338.04

344

-156.71

24558.02

671

170.29

28998.68

342

-158.71

25188.86

627

126.29

15949.16

323

-177.71

31580.84

612

111.29

12385.46

376

-124.71

15552.58

629

128.29

16458.32

363

-137.71

18964.04

24034

1181848

500.7083

Mean

24621.83

156.9135

S.D

b)

x

xi-x

xi-x^2

94

41.375

1711.891

85

32.375

1048.141

15

-37.625

1415.641

40

-12.625

159.3906

87

34.375

1181.641

2

-50.625

2562.891

72

19.375

375.3906

26

-26.625

708.8906

421

9163.875

52.625

Mean

1309.125

36.18183

S.D

c)

x

xi-x

xi-x^2

3

-17

289

5

-15

225

9

-11

121

12

-8

64

20

0

0

31

11

121

37

17

289

43

23

529

160

1638

20

Mean

234

15.29706

S.D

d)

Mean=Ex/n

S.D(population)=sqrt(E(xi-x)^2/n)

S.D(sample)=sqrt(E(xi-x)^2/n-1)

As we can see that higher the n, the difference between mean and standard deviation is more as compared to n being small as we can see in b and c. Also, in case of standard deviation, n-1 would be taken for sample S.D whereas in population it would be divided by n.

x

xi-x

xi-x^2

629

128.29

16458.32

353

-147.71

21818.24

664

163.29

26663.62

351

-149.71

22413.08

633

132.29

17500.64

314

-186.71

34860.62

660

159.29

25373.3

381

-119.71

14330.48

640

139.29

19401.7

366

-134.71

18146.78

696

195.29

38138.18

348

-152.71

23320.34

681

180.29

32504.48

307

-193.71

37523.56

633

132.29

17500.64

337

-163.71

26800.96

663

162.29

26338.04

331

-169.71

28801.48

609

108.29

11726.72

338

-162.71

26474.54

675

174.29

30377

361

-139.71

19518.88

696

195.29

38138.18

304

-196.71

38694.82

647

146.29

21400.76

366

-134.71

18146.78

669

168.29

28321.52

384

-116.71

13621.22

669

168.29

28321.52

389

-111.71

12479.12

693

192.29

36975.44

324

-176.71

31226.42

698

197.29

38923.34

309

-191.71

36752.72

602

101.29

10259.66

341

-159.71

25507.28

671

170.29

28998.68

352

-148.71

22114.66

663

162.29

26338.04

344

-156.71

24558.02

671

170.29

28998.68

342

-158.71

25188.86

627

126.29

15949.16

323

-177.71

31580.84

612

111.29

12385.46

376

-124.71

15552.58

629

128.29

16458.32

363

-137.71

18964.04

24034

1181848

500.7083

Mean

24621.83

156.9135

S.D

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote