Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

NOTE THAT ((This should be done by R studio !)) Please a. Read the data file the

ID: 3219062 • Letter: N

Question

NOTE THAT

((This should be done by R studio !))

Please


a. Read the data file then do any cleaning and validation.

b. Apply two OLS regression by R studio :

The first model:
(Food exports (% of merchandise exports)) is the dependent variable, The independent variables are OilP and REX.

The second model:
"Ores and metals exports (% of merchandise exports)" is the dependent variable, The independent variables are OilP and REX.

Year

REX

OilP

Food exports (% of merchandise exports)

Ores and metals exports (% of merchandise exports)

1980

239.5433424

35.52

0.09638294

0.060083757

1981

240.3102173

34

0.094079554

0.024360528

1982

245.3895131

32.38

0.128489839

0.025668368

1983

242.8677506

29.04

..

..

1984

238.0284197

28.2

..

..

1985

221.878717

27.01

0.259787311

0.116943755

1986

169.6457184

13.53

..

..

1987

144.1934823

17.73

..

..

1988

134.5212315

14.24

1.371078529

0.732151804

1989

136.0536024

17.31

1.374888969

0.834330299

1990

125.5311345

22.26

0.713126234

0.491007478

1991

125.8812467

18.62

0.526384845

0.242750346

1992

118.7733668

18.44

1.074388363

0.548851562

1993

122.2521688

16.33

0.982275388

0.429968062

1994

117.8952881

15.53

0.673955645

0.346686956

1995

114.1213899

16.86

0.810242733

0.567217625

1996

116.3114665

20.29

0.632336949

0.304958406

1997

121.4661302

18.86

..

..

1998

127.1948915

12.28

1.114818605

0.507089276

1999

121.9490893

17.44

0.930990348

0.262574488

2000

123.200674

27.6

0.538501429

0.147164016

2001

125.2424379

23.12

0.558465111

0.201693533

2002

121.5455166

24.36

0.628539417

0.223275991

2003

111.1523893

28.1

0.835851768

0.182707717

2004

103.4682918

36.05

0.7405123

0.172800798

2005

100.5070052

50.59

0.620831971

0.137293785

2006

98.93290899

61

0.64203501

0.219532433

2007

95.96813741

69.04

0.838923226

0.283587719

2008

93.62494305

94.1

0.744029125

0.221986187

2009

100.1652448

60.86

1.407633083

0.232499732

2010

100

77.38

1.155876888

0.154654215

2011

96.57013945

107.46

0.898301922

0.122271232

2012

99.61967144

109.45

0.860627792

0.138455596

2013

102.3680362

105.87

0.878931429

0.403127249

2014

105.3894897

96.29

1.006265279

0.769034983

2015

118.5851177

49.49

1.798068624

1.307540253

R ONLY !!

Year

REX

OilP

Food exports (% of merchandise exports)

Ores and metals exports (% of merchandise exports)

1980

239.5433424

35.52

0.09638294

0.060083757

1981

240.3102173

34

0.094079554

0.024360528

1982

245.3895131

32.38

0.128489839

0.025668368

1983

242.8677506

29.04

..

..

1984

238.0284197

28.2

..

..

1985

221.878717

27.01

0.259787311

0.116943755

1986

169.6457184

13.53

..

..

1987

144.1934823

17.73

..

..

1988

134.5212315

14.24

1.371078529

0.732151804

1989

136.0536024

17.31

1.374888969

0.834330299

1990

125.5311345

22.26

0.713126234

0.491007478

1991

125.8812467

18.62

0.526384845

0.242750346

1992

118.7733668

18.44

1.074388363

0.548851562

1993

122.2521688

16.33

0.982275388

0.429968062

1994

117.8952881

15.53

0.673955645

0.346686956

1995

114.1213899

16.86

0.810242733

0.567217625

1996

116.3114665

20.29

0.632336949

0.304958406

1997

121.4661302

18.86

..

..

1998

127.1948915

12.28

1.114818605

0.507089276

1999

121.9490893

17.44

0.930990348

0.262574488

2000

123.200674

27.6

0.538501429

0.147164016

2001

125.2424379

23.12

0.558465111

0.201693533

2002

121.5455166

24.36

0.628539417

0.223275991

2003

111.1523893

28.1

0.835851768

0.182707717

2004

103.4682918

36.05

0.7405123

0.172800798

2005

100.5070052

50.59

0.620831971

0.137293785

2006

98.93290899

61

0.64203501

0.219532433

2007

95.96813741

69.04

0.838923226

0.283587719

2008

93.62494305

94.1

0.744029125

0.221986187

2009

100.1652448

60.86

1.407633083

0.232499732

2010

100

77.38

1.155876888

0.154654215

2011

96.57013945

107.46

0.898301922

0.122271232

2012

99.61967144

109.45

0.860627792

0.138455596

2013

102.3680362

105.87

0.878931429

0.403127249

2014

105.3894897

96.29

1.006265279

0.769034983

2015

118.5851177

49.49

1.798068624

1.307540253

Explanation / Answer

The data was first saved as a .csv file and was then read into R. Since the data had 5 missing values, they were imputed using the corresponding column mean. Two linear regression models were then fit to the data.

The first model was fitted with Food.exports....of.merchandise.exports. as the dependent variable and OilP & REX as independent variable. It only had a R2 of 0.223 (which is pretty low) with only REX having significance i.e. REX is the only factor that have some effect on the dependent variable; OilP does not seem to have any significant effect to the dependent variable.

The second model was fitted with Ores.and.metals.exports....of.merchandise.exports. as the dependent variable and OilP & REX as independent variable. This also had a very low R2 of 0.0934 with no independent variables showing any significance. Thus, there are other factors that effect the dependent variable and these do independent variables do explain any variation of the dependent variable.

The R code for the same is attached below.

########## R CODE ############

# reading data
data1 = read.csv("C:\Users\Admin\Desktop\data1.csv")
summary(data1)

#no of missing values before imputation
apply(is.na(data1),2,sum)

#there are 5 missing observations. imputing missing value with mean
for(i in 1:ncol(data1)){
data1[is.na(data1[,i]), i] <- mean(data1[,i], na.rm = TRUE)
}

#no of missing values after imputation
apply(is.na(data1),2,sum)

#model 1
model1 = lm(Food.exports....of.merchandise.exports. ~ OilP + REX, data=data1)
summary(model1)

#model 2
model2 = lm(Ores.and.metals.exports....of.merchandise.exports. ~ OilP + REX, data=data1)
summary(model2)