Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Call: lm(formula = wage ~ age + agesq + exper, data = nbasal) Residuals: Min 1Q

ID: 3223126 • Letter: C

Question

Call:

lm(formula = wage ~ age + agesq + exper, data = nbasal)

Residuals:

    Min      1Q Median      3Q     Max

-2268.8 -608.0 -173.0   378.3 4478.5

Coefficients:

            Estimate Std. Error t value   Pr(>|t|)   

(Intercept)   65.505   2985.866   0.022      0.983   

age          123.113    206.307   0.597      0.551   

agesq         -4.202      3.614 -1.163      0.246   

exper        231.988     48.705   4.763 0.00000314 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 906.3 on 265 degrees of freedom

Multiple R-squared: 0.1875, Adjusted R-squared: 0.1783

F-statistic: 20.39 on 3 and 265 DF, p-value: 0.000000000006448

> summary(mod2)

Call:

lm(formula = lwage ~ age + agesq + exper, data = nbasal)

Residuals:

    Min      1Q Median      3Q     Max

-2.4771 -0.3900 0.1087 0.4969 1.8959

Coefficients:

            Estimate Std. Error t value      Pr(>|t|)   

(Intercept) 4.24357    2.58563   1.641        0.1019   

age          0.24852    0.17865   1.391        0.1654   

agesq       -0.00710    0.00313 -2.269        0.0241 *

exper        0.25593    0.04218   6.068 0.00000000446 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7848 on 265 degrees of freedom

Multiple R-squared: 0.216,   Adjusted R-squared: 0.2072

F-statistic: 24.34 on 3 and 265 DF, p-value: 0.00000000000006049

> mod1<-lm(wage~age+agesq+exper,data=nbasal)

> mod2<-lm(lwage~age+agesq+exper,data=nbasal)

> mod3<-lm(lwage~age+agesq+exper+draft+experXdraft,data=nbasal)

> mod4<-lm(lwage~age+agesq+draft,data=nbasal)

> mod5<-lm(lwage~age+agesq+exper+draft,data=nbasal)

> mod6<-lm(lwage~age+agesq+exper+draft+exper_10Xdraft,data=nbasal)

> mod7<-lm(lwage~age_30+agesq_30+exper_10+draft_1+exper_10Xdraft_1,data=nbasal)

>

>

> summary(mod1)

Call:

lm(formula = wage ~ age + agesq + exper, data = nbasal)

Residuals:

    Min      1Q Median      3Q     Max

-2268.8 -608.0 -173.0   378.3 4478.5

Coefficients:

            Estimate Std. Error t value   Pr(>|t|)   

(Intercept)   65.505   2985.866   0.022      0.983   

age          123.113    206.307   0.597      0.551   

agesq         -4.202      3.614 -1.163      0.246   

exper        231.988     48.705   4.763 0.00000314 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 906.3 on 265 degrees of freedom

Multiple R-squared: 0.1875, Adjusted R-squared: 0.1783

F-statistic: 20.39 on 3 and 265 DF, p-value: 0.000000000006448

> summary(mod2)

Call:

lm(formula = lwage ~ age + agesq + exper, data = nbasal)

Residuals:

    Min      1Q Median      3Q     Max

-2.4771 -0.3900 0.1087 0.4969 1.8959

Coefficients:

            Estimate Std. Error t value      Pr(>|t|)   

(Intercept) 4.24357    2.58563   1.641        0.1019   

age          0.24852    0.17865   1.391        0.1654   

agesq       -0.00710    0.00313 -2.269        0.0241 *

exper        0.25593    0.04218   6.068 0.00000000446 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7848 on 265 degrees of freedom

Multiple R-squared: 0.216,   Adjusted R-squared: 0.2072

F-statistic: 24.34 on 3 and 265 DF, p-value: 0.00000000000006049

> summary(mod3)

Call:

lm(formula = lwage ~ age + agesq + exper + draft + experXdraft,

    data = nbasal)

Residuals:

     Min       1Q   Median       3Q      Max

-2.44617 -0.32023 0.04864 0.34504 1.65358

Coefficients:

              Estimate Std. Error t value             Pr(>|t|)   

(Intercept) 1.2289561 2.0142509   0.610              0.54237   

age          0.4420529 0.1387197   3.187              0.00164 **

agesq       -0.0072206 0.0024120 -2.994              0.00305 **

exper       -0.0409674 0.0401862 -1.019              0.30905   

draft       -0.0559423 0.0048970 -11.424 < 0.0000000000000002 ***

experXdraft 0.0053594 0.0006204   8.638 0.000000000000000904 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.587 on 234 degrees of freedom

(29 observations deleted due to missingness)

Multiple R-squared: 0.4854, Adjusted R-squared: 0.4744

F-statistic: 44.14 on 5 and 234 DF, p-value: < 0.00000000000000022

> summary(mod4)

Call:

lm(formula = lwage ~ age + agesq + draft, data = nbasal)

Residuals:

     Min       1Q   Median       3Q      Max

-2.49422 -0.30751 0.09283 0.41890 2.63707

Coefficients:

             Estimate Std. Error t value           Pr(>|t|)   

(Intercept) -0.079132   2.276060 -0.035            0.97229   

age          0.458965   0.160309   2.863            0.00457 **

agesq       -0.006601   0.002787 -2.369            0.01866 *

draft       -0.019653   0.002387 -8.232 0.0000000000000126 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6836 on 236 degrees of freedom

(29 observations deleted due to missingness)

Multiple R-squared: 0.296,   Adjusted R-squared: 0.2871

F-statistic: 33.08 on 3 and 236 DF, p-value: < 0.00000000000000022

> summary(mod5)

Call:

lm(formula = lwage ~ age + agesq + exper + draft, data = nbasal)

Residuals:

     Min       1Q   Median       3Q      Max

-2.48241 -0.32755 0.07521 0.40247 2.36712

Coefficients:

             Estimate Std. Error t value         Pr(>|t|)   

(Intercept) 1.567791   2.307837   0.679          0.49760   

age          0.402755   0.158883   2.535          0.01190 *

agesq       -0.007615   0.002764 -2.755          0.00632 **

exper        0.120535   0.040764   2.957          0.00342 **

draft       -0.017814   0.002430 -7.330 0.00000000000368 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6727 on 235 degrees of freedom

(29 observations deleted due to missingness)

Multiple R-squared: 0.3213, Adjusted R-squared: 0.3097

F-statistic: 27.81 on 4 and 235 DF, p-value: < 0.00000000000000022

> summary(mod6)

Call:

lm(formula = lwage ~ age + agesq + exper + draft + exper_10Xdraft,

    data = nbasal)

Residuals:

     Min       1Q   Median       3Q      Max

-2.44617 -0.32023 0.04864 0.34504 1.65358

Coefficients:

                 Estimate Std. Error t value             Pr(>|t|)   

(Intercept)     1.2289561 2.0142509   0.610              0.54237   

age             0.4420529 0.1387197   3.187              0.00164 **

agesq          -0.0072206 0.0024120 -2.994              0.00305 **

exper          -0.0409674 0.0401862 -1.019              0.30905   

draft          -0.0023482 0.0027754 -0.846              0.39836   

exper_10Xdraft 0.0053594 0.0006204   8.638 0.000000000000000904 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.587 on 234 degrees of freedom

(29 observations deleted due to missingness)

Multiple R-squared: 0.4854, Adjusted R-squared: 0.4744

F-statistic: 44.14 on 5 and 234 DF, p-value: < 0.00000000000000022

> summary(mod7)

Call:

lm(formula = lwage ~ age_30 + agesq_30 + exper_10 + draft_1 +

    exper_10Xdraft_1, data = nbasal)

Residuals:

     Min       1Q   Median       3Q      Max

-2.43580 -0.33069 0.06267 0.34895 1.64246

Coefficients: (1 not defined because of singularities)

                   Estimate Std. Error t value             Pr(>|t|)   

(Intercept)       7.5386337 0.1023549 73.652 < 0.0000000000000002 ***

age_30            0.4327157 0.1381964   3.131              0.00196 **

agesq_30         -0.0071008 0.0024064 -2.951              0.00349 **

exper_10         -0.0395884 0.0395991 -1.000              0.31847   

draft_1                  NA         NA      NA                   NA   

exper_10Xdraft_1 0.0056981 0.0004738 12.027 < 0.0000000000000002 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5866 on 235 degrees of freedom

(29 observations deleted due to missingness)

Multiple R-squared: 0.4838, Adjusted R-squared: 0.475

F-statistic: 55.06 on 4 and 235 DF, p-value: < 0.00000000000000022

> anova(mod3,mod4)

Analysis of Variance Table

Model 1: lwage ~ age + agesq + exper + draft + experXdraft

Model 2: lwage ~ age + agesq + draft

Res.Df     RSS Df Sum of Sq      F                Pr(>F)   

1    234 80.623                                             

2    236 110.287 -2   -29.664 43.048 < 0.00000000000000022 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> anova(mod3,mod5)

Analysis of Variance Table

Model 1: lwage ~ age + agesq + exper + draft + experXdraft

Model 2: lwage ~ age + agesq + exper + draft

Res.Df     RSS Df Sum of Sq      F               Pr(>F)   

1    234 80.623                                            

2    235 106.331 -1   -25.708 74.614 0.000000000000000904 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

test the null hupothesis that ln(wage) is linear in the player's age. What is the p-value?

In wage) 30- 2agesq-t-B 3eaper B4draft+B5erper *draft-+E

Explanation / Answer

Part-A

To test the null hypothesis that ln(wage) is linear in the players’ age we have to test that the coefficient of agesq=0

From suumary(mod3) we have p-value of test of coefficient of agesq is p=0.00305

As p-value is less than 0.05, we conclude that agesq is significant and hence ln(wage) is not linear in the players’ age.

Part-B

From mode 3 summary, we have F(5, 234)=44.14 with p< 0.00000000000000022

As p-value is less than 0.05, we reject the joint null hypothesis and conclude at least one coefficient is significantly different from zero.

Part-C

From anova(mod3,mod4) results we have F(2,236)43.048, p < 0.00000000000000022

As p-value is less than 0.05,, we reject the null hypothesis and conclude that experience affect ln(wage) significantly.

Part-D

From suumary(mod3) we have p-value of test of coefficient of interaction of experience and draft is p= 0.000000000000000904

As p-value is less than 0.05, we reject the null hypothesis and conclude that the interaction of experience and draft significantly affect ln(wage)

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote