Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Problem 9b: To get the regression output for the hypothesis test: Stats Regressi

ID: 3223854 • Letter: P

Question

Problem 9b: To get the regression output for the hypothesis test:

Stats Regression Regression Fit Regression Model input the same x and y OK

Regression Analysis: LWT versus BWT

Analysis of Variance

Source          DF Adj SS Adj MS F-Value P-Value

Regression       1    6068 6068.1     6.69    0.010

BWT            1    6068 6068.1     6.69    0.010

Error          187 169730   907.6

Lack-of-Fit 131 133641 1020.2     1.58    0.027

Pure Error    56   36090   644.5

Total          188 175799

Model Summary

      S   R-sq R-sq(adj) R-sq(pred)

30.1272 3.45%      2.94%       1.39%

Coefficients

Term         Coef SE Coef T-Value P-Value   VIF

Constant   106.87     9.14    11.69    0.000

BWT       0.00779 0.00301     2.59    0.010 1.00

Regression Equation

LWT = 106.87 + 0.00779 BWT

Fits and Diagnostics for Unusual Observations

Obs     LWT     Fit   Resid Std Resid

23 202.00 128.97   73.03       2.43 R

39 215.00 130.29   84.71       2.82 R

68 250.00 132.61 117.39       3.91 R

76 229.00 133.38   95.62       3.19 R

93 235.00 135.15   99.85       3.33 R

106 241.00 136.40 104.60       3.49 R

129 116.00 142.66 -26.66      -0.90     X

130 123.00 145.75 -22.75      -0.77     X

131 120.00 112.39    7.61       0.26     X

132 130.00 114.82   15.18       0.51     X

133 187.00 115.71   71.29       2.41 R X

147 200.00 121.89   78.11       2.61 R

171 187.00 125.31   61.69       2.06 R

183 190.00 126.08   63.92       2.13 R

R Large residual

X Unusual X

Include: What must you assume to analyze this data?

Explanation / Answer

Answer:

For the regression analysis of the given data, we must assume the following assumptions:

1] Normality: We will assume the two related populations follow an approximate normal distribution.

2] Linear relationship: For the regression analysis, data should be bivariate and there should be a significant relationship exists between the given two variables. For the given regression analysis, we get p-value as 0.00 which indicate significant relationship between the given two variables.

3] There would not be any existence of multicollinearity and auto-correlation for the given regression model. For the given regression model, the VIF is given as 1.00 which indicate that the predictors are not correlated with each other.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote