A real estate investor has the opportunity to purchase land currently zoned as r
ID: 3223944 • Letter: A
Question
A real estate investor has the opportunity to purchase land currently zoned as residential. If the county board approves a request to rezone the property as commercial within the next year, the investor will be able to lease the land to a large discount firm that wants to open a new store on the property. However, if the zoning change is not approved, the investor will have to sell the property at a loss. Profits (in thousands of dollars) are shown in the following payoff table:
State of Nature Rezoning Approved Rezoning Not Approved Decision Alternative s1 s2 Purchase, d1 640 -200 Do not purchase, d2 0 0Explanation / Answer
(a) Expected Profit when purchased
= E(Profit | Purchased)
= 640*P ( Profit =640| d1) +(-200)* P(Profit = -200| d1)
= 640*P(s1) + (-200)*P(s2)
= 640*0.5 + (-200)*0.5
= 320 -100 = 220 (in thousand dollars)
Similarly, Expected Profit when Not Purchased
= 0*P(s1) + 0*P(s2)
= 0
Hence, Expected Profit when purchased is higher than when not purchased.
So, recommendation is: Do Purchase.
Expected Profit on Purhasing = $ 220,000
(b) Suppose Resistance is High. Then,
E(profit | d1) = 640*P(s1|H) - 200*P(s2|H) = 640*0.16 -200*0.84
= 102.4 - 168
= -65.6 which is less than 0, the value if not purchased.
Hence, Recomendation is: Do NOT Purchase if High Resitance.
For Low Resistance,
E(Profit | d1) = 600*P(s1|L)-200*P(s2|L)
= 600*0.85 - 200*0.15
= 510 - 30 = 480, which is greater than 0
Hence, Recomendation is: Do Purchase if Low Resitance.
Hence, Optimal Strategy is:
Purchase if Low Resistance. But, Do NOT Purchase if High Resistance.
Additionally, if Resistance is not known in advance, then
E(Profit | d1)
= E(Profit | d1 and High Resistance) * P(High Resistance) + E(Profit | d1 and Low Resistance) * P(Low Resistance)
= (-65.6)* 0.51 + 480*0.49
= 201.74400 (in thousands of dollars)
(c) In this case,
Option Cost = $10,000
As shown in (b) above,
if Resistance is not known in advance, then
E(Profit | d1)
= E(Profit | d1 and High Resistance) * P(High Resistance) + E(Profit | d1 and Low Resistance) * P(Low Resistance)
= (-65.6)* 0.51 + 480*0.49
= 201.74400 (in thousands of dollars)
So, Net Expected Profit if Resistance is not known in advance is
= -10000 + 201744
= 191744 which is more than 0
Hence, Yes. Option can be purchased.
Now, Maximum that the investor should be willing to pay for the option
= E(Profit if Resistance is not known)
= $ 201744
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.