Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The cost of a casting is believed to be proportional to its weight. Fifteen part

ID: 3224550 • Letter: T

Question

The cost of a casting is believed to be proportional to its weight. Fifteen parts have been collected and the weight and cost of each part is recorded in the table below. a) Using this data, determine the least squares regression equation to fit the data. You must show your calculations (by hand or in Excel). If you're using Excel, you can use the SUM, SUMSQ, and SUMPRODUCT functions to do the sums, but you can't just use LINEST to get the answers In your submission, you must indicate the values for the following parameters. Label them and put a box around them: sigma y_i x_i sigma x^2_i S_xx beta_0 x or sigma x_i y or sigma y_i S_xy beta_1 b) Conduct a hypothesis test (with alpha = 0.05) on your value of beta_1 to evaluate whether the regression is significant. Label all 7 steps of the hypothesis test. c) Determine a 90% confidence interval on beta_0. d) Determine the cost that is predicted by the regression equation for a casting that weighs 45 kg. e) Determine a 95% confidence interval on the mean cost of a casting that weighs 45 kg. f) Determine a 95% prediction interval on the cost of a casting that weighs 45 kg. g) Calculate R^2 for your regression equation.

Explanation / Answer

A.a)

Weight(x)

Cost(y)

xy

x-square

Y-square

22.8

940

21432

519.84

883600

12.5

695

8687.5

156.25

483025

87.4

2368

206963.2

7638.76

5607424

27.3

1064

29047.2

745.29

1132096

77.4

2154

166719.6

5990.76

4639716

44.3

1433

63481.9

1962.49

2053489

27.9

1038

28960.2

778.41

1077444

11.1

668

7414.8

123.21

446224

37.5

1253

46987.5

1406.25

1570009

40.4

1246

50338.4

1632.16

1552516

40.9

1345

55010.5

1672.81

1809025

13.8

713

9839.4

190.44

508369

34.5

1188

40986

1190.25

1411344

70.9

2012

142650.8

5026.81

4048144

45

1419

63855

2025

2013561

Sum total

593.7

19536

942374

31058.73

29235986

from the table, we have

n=15

sum(x)=593.7

sum(y)=19536

sum(xy)=942374

sum(x-square)=31058.73

Sxx=sum(x-square)-{sum(x)}^2/n

solving we get

Sxx=7560

Sxy=sum(xy)-{sum(x)*sum(y)/n}

solving we get

Sxy=169139

b1=Sxy/Sxx

b1=169139/7560=22.37

b0=sum(y)-b1*sum(x)/n

solving we get

b0=416.89

A.d) weight(x)=45

b0=416.89

b1=22.37

to calculate, cost(y)

cost(y)=b0+b1*x

cost(y)=416.89+22.37*45

cost(y)=1423

A.e) given,

weight(x)=45

alpha=0.05

T-value(0.025,13)=2.160

SSE=29235986 - 416.89*19536-22.37*942374

SSE=8209

Se=sqrt(SSE/n-2)

Se=25.13

point estimate(y)=b0+b1*x

point estimate(y)=416.89+22.37*45

point estimate(y)=1423.54

Confidence interval is given by

y± t-value*Se*sqrt{1/n+(x0-x mean)^2/Sxx}

1423.54±2.16*25.13*sqrt(0.07)

therefore confidence interval is given as

CI=(1409.12, 1437.96)

A.g) to calculate R^2

Syy=sum(y-square)-sum(y)^2/n

Syy=3792300

R^2=b1^2*Sxx/Syy

=22.37*22.37*169139/3792300

R^2=22.32

Weight(x)

Cost(y)

xy

x-square

Y-square

22.8

940

21432

519.84

883600

12.5

695

8687.5

156.25

483025

87.4

2368

206963.2

7638.76

5607424

27.3

1064

29047.2

745.29

1132096

77.4

2154

166719.6

5990.76

4639716

44.3

1433

63481.9

1962.49

2053489

27.9

1038

28960.2

778.41

1077444

11.1

668

7414.8

123.21

446224

37.5

1253

46987.5

1406.25

1570009

40.4

1246

50338.4

1632.16

1552516

40.9

1345

55010.5

1672.81

1809025

13.8

713

9839.4

190.44

508369

34.5

1188

40986

1190.25

1411344

70.9

2012

142650.8

5026.81

4048144

45

1419

63855

2025

2013561

Sum total

593.7

19536

942374

31058.73

29235986

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote