Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

{Exercise 13.09 (Algorithmic)} To study the effect of temperature on yield in a

ID: 3229816 • Letter: #

Question

{Exercise 13.09 (Algorithmic)}

To study the effect of temperature on yield in a chemical process, five batches were produced at each of three temperature levels. The results follow.

Temperature

Use a .05 level of significance to test whether the temperature level has an effect on the mean yield of the process.

Calculate the value of the test statistic (to 2 decimals).


The p-value is Selectless than .01between .01 and .025between .025 and .05between .05 and .10greater than .10Item 11

What is your conclusion?
SelectConclude that the mean yields for the three temperatures are not all equalDo not reject the assumption that the mean yields for the three temperatures are equalItem 12

{Exercise 13.09 (Algorithmic)}

To study the effect of temperature on yield in a chemical process, five batches were produced at each of three temperature levels. The results follow.

Temperature

50°C 60°C 70°C 36 31 26 26 32 31 38 35 31 41 24 33 34 28 34 Construct an analysis of variance table (to 2 decimals, if necessary).
Source of Variation Sum of Squares Degrees of Freedom Mean Square F Treatments Error Total

Use a .05 level of significance to test whether the temperature level has an effect on the mean yield of the process.

Calculate the value of the test statistic (to 2 decimals).


The p-value is Selectless than .01between .01 and .025between .025 and .05between .05 and .10greater than .10Item 11

What is your conclusion?
SelectConclude that the mean yields for the three temperatures are not all equalDo not reject the assumption that the mean yields for the three temperatures are equalItem 12

Explanation / Answer

Step 1                      
   Null Hypothesis Ho :           µ1 =µ2 =µ3       
   Alternative Hypothesis :           µ1 µ2 µ3       
Step 2                      
   Degrees of freedom between = k - 1 = 3 - 1 = 2                  
   Degrees of freedom Within = n - k = 15 - 3 = 12                  
                      
   Degrees of freedom Total F( k-1,n - k,) at 0.05 is = F Crit = 3.885                  
                      
Step 3                      
   Grand Mean = G / N = 35+30+31 / 3 = 32                  
    SST = ( Xi - GrandMean)^2 = (36-32)^2 + (26-32)^2 + (38-32)^2 + ……..& so on = 306                  
   SS Within = (Xi - Mean of Xi ) ^2 =,(36-35)^2 + (26-35)^2 + (38-35)^2 + ……..& so on = 236                  
                      
   SS Between = SST - SS Within = 306 - 236 = 70                  
Step 4                      
   Mean Square Between = SS Between / df Between = 70/2 = 35                  
   Mean Square Within = SS Within / df Within = 236/12 = 19.667                  
                      
Step 5                      
   F Cal = MS Between / Ms Within = 35/19.667 = 1.78                  
   We got |F cal| = 1.78 & |F Crit| =3.885                  
                      
MAKE DECISION                      
   Hence Value of |F cal| < |F Crit|and Here We Accept Ho                  

Treatments ONE WAY ANOVA Mean = X /n 50 36 26 38 41 34 35 60 31 32 35 24 28 30 70 26 31 31 33 34 31