The REG Procedure Model: MODEL1 Dependent Variable: totsat Number of Observation
ID: 3229950 • Letter: T
Question
The REG Procedure
Model: MODEL1
Dependent Variable: totsat
Number of Observations Read
51
Number of Observations Used
51
Analysis of Variance
Source
DF
Sum of
Squares
Mean
Square
F Value
Pr > F
Model
1
41712
41712
5.18
0.0272
Error
49
394455
8050.10685
Corrected Total
50
436167
Root MSE
89.72239
R-Square
0.0956
Dependent Mean
1070.05882
Adj R-Sq
0.0772
Coeff Var
8.38481
Parameter Estimates
Variable
Label
DF
Parameter
Estimate
Standard
Error
t Value
Pr > |t|
Intercept
Intercept
1
1175.62307
48.04726
24.47
<.0001
texppp
texppp
1
-0.00953
0.00419
-2.28
0.0272
The REG Procedure
Model: MODEL2
Dependent Variable: totsat
Number of Observations Read
51
Number of Observations Used
51
Analysis of Variance
Source
DF
Sum of
Squares
Mean
Square
F Value
Pr > F
Model
2
365843
182922
124.85
<.0001
Error
48
70324
1465.07836
Corrected Total
50
436167
Root MSE
38.27634
R-Square
0.8388
Dependent Mean
1070.05882
Adj R-Sq
0.8321
Coeff Var
3.57703
Parameter Estimates
Variable
Label
DF
Parameter
Estimate
Standard
Error
t Value
Pr > |t|
Intercept
Intercept
1
1139.03000
20.64449
55.17
<.0001
texppp
texppp
1
0.00307
0.00198
1.55
0.1270
pertake
pertake
1
-2.51564
0.16913
-14.87
<.0001
The REG Procedure
Model: MODEL3
Dependent Variable: totsat
Number of Observations Read
51
Number of Observations Used
51
Analysis of Variance
Source
DF
Sum of
Squares
Mean
Square
F Value
Pr > F
Model
3
374348
124783
94.87
<.0001
Error
47
61818
1315.28406
Corrected Total
50
436167
Root MSE
36.26685
R-Square
0.8583
Dependent Mean
1070.05882
Adj R-Sq
0.8492
Coeff Var
3.38924
Parameter Estimates
Variable
Label
DF
Parameter
Estimate
Standard
Error
t Value
Pr > |t|
Intercept
Intercept
1
1125.67840
20.25306
55.58
<.0001
iexppp
iexppp
1
-0.01388
0.00692
-2.00
0.0508
nexppp
1
0.01432
0.00480
2.98
0.0045
pertake
pertake
1
-2.52324
0.16028
-15.74
<.0001
The REG Procedure
Model: MODEL4
Dependent Variable: totsat
Number of Observations Read
51
Number of Observations Used
51
Analysis of Variance
Source
DF
Sum of
Squares
Mean
Square
F Value
Pr > F
Model
3
374624
124875
95.37
<.0001
Error
47
61543
1309.42363
Corrected Total
50
436167
Root MSE
36.18596
R-Square
0.8589
Dependent Mean
1070.05882
Adj R-Sq
0.8499
Coeff Var
3.38168
Parameter Estimates
Variable
Label
DF
Parameter
Estimate
Standard
Error
t Value
Pr > |t|
Intercept
Intercept
1
670.63509
197.97940
3.39
0.0014
liexppp
1
-69.78365
36.23337
-1.93
0.0602
lnexppp
1
121.84843
41.88364
2.91
0.0055
pertake
pertake
1
-2.52523
0.15776
-16.01
<.0001
Present your results for model 4 in equation form. Is this model preferred over model 3? EXPALIN? How should you interpret the coefficient on the two logged expenditure variables? DEMONSTRATE!
OF all the models which one do you prefer and why?
Number of Observations Read
51
Number of Observations Used
51
Explanation / Answer
Model 4:
totsat=670.635 -69.78*liexppp + 121.84 *lnexppp -2.525 *pertake
Yes this model has more adjusted R-sq.
interpretions:
for unit increase in log of exppp gives rise of 121 to totsat. or unit increase in exppp increases totsat by
3.55E+52 units
Model 4 is most preferred since it has highest adj-R-sq and all the variables are significant at 6% level.
3.55E+52 units
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.