Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A manufacturer of chocolate candies uses machines to package candies as they mov

ID: 3245199 • Letter: A

Question

A manufacturer of chocolate candies uses machines to package candies as they move along a filling line. Although the packages are labeled as 8 ounces, the company wants the packages to contain a mean of 8.17 ounces so that virtually none of the packages contain less than 8 ounces. A sample of 50 packages is selected periodically, and the packaging process is stopped if there is evidence that the mean amount packaged is different from 8.17 ounces. Suppose that in a particular sample of 50 packages, the mean amount dispensed is 8.173 ounces, with a sample standard deviation of 0.041 ounce.

Complete parts (a) and (b).

Part 1

Critical Values of t. For a particular number of degrees of freedom, entry represents the critical value of t corresponding to the cumulative probability 1 minus alpha and a specified upper-tail area alpha.                                                                                              

                Cumulative Probabilities                                                                              

                0.75        0.90        0.95        0.975     0.99        0.995

                Upper-Tail Areas                                                                             

Degrees of Freedom      0.25        0.10        0.05        0.025     0.01        0.005

1              1.0000   3.0777   6.3138   12.7062 31.8207 63.6574

2              0.8165   1.8856   2.9200   4.3027   6.9646   9.9248

3              0.7649   1.6377   2.3534   3.1824   4.5407   5.8409

4              0.7407   1.5332   2.1318   2.7764   3.7469   4.6041

5              0.7267   1.4759   2.0150   2.5706   3.3649   4.0322

6              0.7176   1.4398   1.9432   2.4469   3.1427   3.7074

7              0.7111   1.4149   1.8946   2.3646   2.9980   3.4995

8              0.7064   1.3968   1.8595   2.3060   2.8965   3.3554

9              0.7027   1.3830   1.8331   2.2622   2.8214   3.2498

10           0.6998   1.3722   1.8125   2.2281   2.7638   3.1693

11           0.6974   1.3634   1.7959   2.2010   2.7181   3.1058

12           0.6955   1.3562   1.7823   2.1788   2.6810   3.0545

13           0.6938   1.3502   1.7709   2.1604   2.6503   3.0123

14           0.6924   1.3450   1.7613   2.1448   2.6245   2.9768

15           0.6912   1.3406   1.7531   2.1315   2.6025   2.9467

16           0.6901   1.3368   1.7459   2.1199   2.5835   2.9208

17           0.6892   1.3334   1.7396   2.1098   2.5669   2.8982

18           0.6884   1.3304   1.7341   2.1009   2.5524   2.8784

19           0.6876   1.3277   1.7291   2.0930   2.5395   2.8609

20           0.6870   1.3253   1.7247   2.0860   2.5280   2.8453

21           0.6864   1.3232   1.7207   2.0796   2.5177   2.8314

22           0.6858   1.3212   1.7171   2.0739   2.5083   2.8188

23           0.6853   1.3195   1.7139   2.0687   2.4999   2.8073

24           0.6848   1.3178   1.7109   2.0639   2.4922   2.7969

25           0.6844   1.3163   1.7081   2.0595   2.4851   2.7874

26           0.6840   1.3150   1.7056   2.0555   2.4786   2.7787

27           0.6837   1.3137   1.7033   2.0518   2.4727   2.7707

28           0.6834   1.3125   1.7011   2.0484   2.4671   2.7633

29           0.6830   1.3114   1.6991   2.0452   2.4620   2.7564

30           0.6828   1.3104   1.6973   2.0423   2.4573   2.7500

31           0.6825   1.3095   1.6955   2.0395   2.4528   2.7440

32           0.6822   1.3086   1.6939   2.0369   2.4487   2.7385

33           0.6820   1.3077   1.6924   2.0345   2.4448   2.7333

34           0.6818   1.3070   1.6909   2.0322   2.4411   2.7284

35           0.6816   1.3062   1.6896   2.0301   2.4377   2.7238

36           0.6814   1.3055   1.6883   2.0281   2.4345   2.7195

37           0.6812   1.3049   1.6871   2.0262   2.4314   2.7154

38           0.6810   1.3042   1.6860   2.0244   2.4286   2.7116

39           0.6808   1.3036   1.6849   2.0227   2.4258   2.7079

40           0.6807   1.3031   1.6839   2.0211   2.4233   2.7045

41           0.6805   1.3025   1.6829   2.0195   2.4208   2.7012

42           0.6804   1.3020   1.6820   2.0181   2.4185   2.6981

43           0.6802   1.3016   1.6811   2.0167   2.4163   2.6951

44           0.6801   1.3011   1.6802   2.0154   2.4141   2.6923

45           0.6800   1.3006   1.6794   2.0141   2.4121   2.6896

46           0.6799   1.3002   1.6787   2.0129   2.4102   2.6870

47           0.6797   1.2998   1.6779   2.0117   2.4083   2.6846

48           0.6796   1.2994   1.6772   2.0106   2.4066   2.6822

Part 2

Critical Values of t.                                                                                          

                Cumulative Probabilities                                                                              

                0.75        0.90        0.95        0.975     0.99        0.995

                Upper-Tail Areas                                                                             

Degrees of Freedom      0.25        0.10        0.05        0.025     0.01        0.005

49           0.6795   1.2991   1.6766   2.0096   2.4049   2.6800

50           0.6794   1.2987   1.6759   2.0086   2.4033   2.6778

51           0.6793   1.2984   1.6753   2.0076   2.4017   2.6757

52           0.6792   1.2980   1.6747   2.0066   2.4002   2.6737

53           0.6791   1.2977   1.6741   2.0057   2.3988   2.6718

54           0.6791   1.2974   1.6736   2.0049   2.3974   2.6700

55           0.6790   1.2971   1.6730   2.0040   2.3961   2.6682

56           0.6789   1.2969   1.6725   2.0032   2.3948   2.6665

57           0.6788   1.2966   1.6720   2.0025   2.3936   2.6649

58           0.6787   1.2963   1.6716   2.0017   2.3924   2.6633

59           0.6787   1.2961   1.6711   2.0010   2.3912   2.6618

60           0.6786   1.2958   1.6706   2.0003   2.3901   2.6603

61           0.6785   1.2956   1.6702   1.9996   2.3890   2.6589

62           0.6785   1.2954   1.6698   1.9990   2.3880   2.6575

63           0.6784   1.2951   1.6694   1.9983   2.3870   2.6561

64           0.6783   1.2949   1.6690   1.9977   2.3860   2.6549

65           0.6783   1.2947   1.6686   1.9971   2.3851   2.6536

66           0.6782   1.2945   1.6683   1.9966   2.3842   2.6524

67           0.6782   1.2943   1.6679   1.9960   2.3833   2.6512

68           0.6781   1.2941   1.6676   1.9955   2.3824   2.6501

69           0.6781   1.2939   1.6672   1.9949   2.3816   2.6490

70           0.6780   1.2938   1.6669   1.9944   2.3808   2.6479

71           0.6780   1.2936   1.6666   1.9939   2.3800   2.6469

72           0.6779   1.2934   1.6663   1.9935   2.3793   2.6459

73           0.6779   1.2933   1.6660   1.9930   2.3785   2.6449

74           0.6778   1.2931   1.6657   1.9925   2.3778   2.6439

75           0.6778   1.2929   1.6654   1.9921   2.3771   2.6430

76           0.6777   1.2928   1.6652   1.9917   2.3764   2.6421

77           0.6777   1.2926   1.6649   1.9913   2.3758   2.6412

78           0.6776   1.2925   1.6646   1.9908   2.3751   2.6403

79           0.6776   1.2924   1.6644   1.9905   2.3745   2.6395

80           0.6776   1.2922   1.6641   1.9901   2.3739   2.6387

81           0.6775   1.2921   1.6639   1.9897   2.3733   2.6379

82           0.6775   1.2920   1.6636   1.9893   2.3727   2.6371

83           0.6775   1.2918   1.6634   1.9890   2.3721   2.6364

84           0.6774   1.2917   1.6632   1.9886   2.3716   2.6356

85           0.6774   1.2916   1.6630   1.9883   2.3710   2.6349

86           0.6774   1.2915   1.6628   1.9879   2.3705   2.6342

87           0.6773   1.2914   1.6626   1.9876   2.3700   2.6335

88           0.6773   1.2912   1.6624   1.9873   2.3695   2.6329

89           0.6773   1.2911   1.6622   1.9870   2.3690   2.6322

90           0.6772   1.2910   1.6620   1.9867   2.3685   2.6316

91           0.6772   1.2909   1.6618   1.9864   2.3680   2.6309

92           0.6772   1.2908   1.6616   1.9861   2.3676   2.6303

93           0.6771   1.2907   1.6614   1.9858   2.3671   2.6297

94           0.6771   1.2906   1.6612   1.9855   2.3667   2.6291

95           0.6771   1.2905   1.6611   1.9853   2.3662   2.6286

96           0.6771   1.2904   1.6609   1.9850   2.3658   2.6280

97           0.6770   1.2903   1.6607   1.9847   2.3654   2.6275

98           0.6770   1.2902   1.6606   1.9845   2.3650   2.6269

99           0.6770   1.2902   1.6604   1.9842   2.3646   2.6264

100         0.6770   1.2901   1.6602   1.9840   2.3642   2.6259

110         0.6767   1.2893   1.6588   1.9818   2.3607   2.6213

120         0.6765   1.2886   1.6577   1.9799   2.3578   2.6174

infinity 0.6745   1.2816   1.6449   1.9600   2.3263   2.5758

a. Is there evidence that the population mean amount is different from 8.17 ounces? (Use a

0.10 level of significance.)

State the null and alternative hypotheses.

H0: (>, =, <, , , ) ___ ?

H1: (<, >, , , , =) ___?

(Type integers or decimals.)

Identify the critical value(s).

The critical value(s) is(are) __?

(Round to four decimal places as needed. Use a comma to separate answers as needed.)

Determine the test statistic.

The test statistic is ___?

(Round to four decimal places as needed.)

State the conclusion.

(Do not reject, Reject) H0. There is (sufficient, insufficient) evidence to conclude the population mean amount is different from 8.17 ounces.

b. Determine the p-value and interpret its meaning.

The p-value is ___? (Round to four decimal places as needed.)

Interpret the meaning of the p-value. Choose the correct answer below.

A. The p-value is the probability of not rejecting the null hypothesis when it is false.

B. The p-value is the probability of obtaining a sample mean that is equal to or more extreme than

0.003 ounce above 8.17 if the null hypothesis is false.

C. The p-value is the probability of obtaining a sample mean that is equal to or more extreme than

0.003 ounce below 8.17 if the null hypothesis is false.

D. The p-value is the probability of obtaining a sample mean that is equal to or more extreme than

0.003 ounce away from 8.17 if the null hypothesis is true.

Explanation / Answer

a) Is there evidence that the population mean amount is different from 8.17oz? (use a 0.10 level of significance)

Ho: u >= 8.17
Ha: u < 8.17

90% confidence interval since a= 0.10

a/2= 0.5

crictical value for the Za/2 for 90% CI from standard z table the value is 1.645

test stastic is given by z = x^- mu / (s/sqrtn)

WHERE n = number of samples given = 50

mean mu = 8.17

standard deviation s =0.041

degrees of freedom =n-1 50-1 =49

Z =( 8.17-8.173 ) / ( 0.041/sqrt(50))

=-0.5173

The direction doesn't matter in a 2-tailed test. Since |z| < |-1.645|, there is insufficient evidence to reject the null hypothesis. The mean is not statistically different from 8.17

b) p = NORMSDIST(-0.5173) = 0.3051
And to convert it into a two-tailed p value, multiply by 2

2*0.3051 = 0.6102
interpretation: There's a 6.1% chance that we could see a difference this far from 8.17 (in either direction) due to random sampling error, if the true population mean was 8.17

Interpret the meaning of the p-value. Choose the correct answer below.

A. The p-value is the probability of not rejecting the null hypothesis when it is false.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote