Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

*** DATA B score Numeric 17 14 None None 19 Right Scale Input Part 1 : Download

ID: 3246934 • Letter: #

Question

*** DATA

B

score Numeric 17 14  None None 19 Right Scale Input

Part 1 : Download the file "hw2-data.sav". This is simulated data with two variables: Score, the individual's score on some test, and Group, the group the individual belongs to (A or B). Please answer the following questions:

1. What is the sample size?

2. What is the mean and variance of the entire sample?

3. What is the mean and variance of Group A?

4. What is the mean and variance of Group B?

5. Plot a histogram of scores for the entire group.

6. Plot a histogram for Group A, and another for Group B.

7. Without doing any calculations- do you think there is a difference in the group means? Why or why not?

score type 11.42578720134370 A 10.85742539165350 A 9.31337371949495 A 10.44951932474110 A 10.61338150655250 A 9.85173888869614 A 10.79828915085010 A 9.34610344287797 A 12.13299565502180 A 8.47362004819231 A 9.78029536372566 A 9.99118913382795 A 9.66644191120154 A 10.53421350073270 A 9.42083527137901 A 11.24492890148330 A 10.46875771027510 A 11.55551287818810 A 9.23293388719641 A 9.14994856749139 A 9.62416514445747 A 10.98530997989950 A 10.42689197261100 A 11.49169677814810 A 8.60663686365064 A 8.08366009682623 B 7.60300697588410 B 8.27636301486757 B 7.93065447866175 B 8.95843730400666 B 7.44042918402056 B 9.05720658910886 B 7.45639804092888 B 6.36544700840028 B 8.63782320150698 B 7.99752563000492 B 7.20080538000171 B 7.57677912344459 B 9.26341586856752 B 7.67465562602318 B 6.71481004995297 B 8.51515186267148 B 9.30659378113112 B 7.08030562836956 B 8.91860940624242 B 9.17633036766511 B 8.64368427802216 B 8.54402523882834 B 8.43429362625656 B 8.42776429193225

B

Explanation / Answer

1. The data display score of individuals belonging to either group A or B. The total number of participants, N=50, where, groupA has nA=25 individuals nad groupB has nB=25 individuals.

2. Let X denote the score for entire sample. Compute the total score for the entire sample and divide it by 50 to obtain the mean score.

Xbar=Sigma score/N=458.726/25=9.175.

Variance of the score is as follows:

Variance=1/N-1 sigma (X-Xbar)^2=1/50-1 {(11.4258-9.175)^2+...+(8.4278-9.175)^2}=1.890

3. Compute the total for group A and divide the sum by 25 to find mean score for group A.

MeanA, Abar=sigma A/nA=(11.4258+10.8574+...+8.6066)/25=10.218.

VarianceA=1/nA-1 sigma {(A-Abar)}^2=1/25-1 {(11.4258-10.218)^2+...+(8.6066-10.218)^2}=0.931

4. Similarly,

MeanB, Bbar=(8.08366+7.60301+...+8.42776)/25=203.284/25=8.131

VarianceB=1/nB-1 sigma {(B-Bbar)}^2=1/25-1 {(8.08366-8.131)^2+...+(8.42776-8.131)^2}=0.660