Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Table #1 : Data Set for Test#1 Capital Observation OutpuMQ) Labor Input(L) Input

ID: 3250430 • Letter: T

Question

Table #1 : Data Set for Test#1 Capital Observation OutpuMQ) Labor Input(L) Input(K) 657.29 162.31 935.93 214.43 542.5 11 10.65 186.44 245.83 1052.68 3406.02 69061 452.79 306991 320.54 1618.75 10 1272.05 253.17 1562.08 11 1004.45 236.44 12 598.87 140.73 875.37 853.1 145.04 1696.98 14 1165.63 240.27 1078.79 15 1917.55 536.73 2109.34 16 9849.17 1564.83 13989.55 17 1088.27 214.62 9119.7 19 3175.39 5686.99 21 515931 835.69 5206.36 3378.4 592.85 357.32 259.91 2031.93 25 2065.85 497.6 2492.98 26 2293.87 275.2 1711 .74 745.67 951872115 789 .9 4 5 6 7 8 9 5 7 2 2 5 6 7 3 5 4-06839278e7 567090700397352.. 9 : 3 5479 6 3849 /) 997 5 26156816679708818008539 16 2 718535656889500 2 2 3 7 1 43511 86019896 2230477 al-K 1123 221 a C In 1 3 4 3 4 1 9 2 4 7 4 3 4 7 3 3 2-4 947 162 7 L-34 48 1. 67 4. 5 147027 86 t2465102 10360506 48105) 2 0 9 9 7 1,L pu 6184295725344436- 1025 3 5542 1212 64 3221125 521538 12 eb TL 9359829695571357739 145857 296860841048 6 51263 8988 Q 500267752485579855,0 9721535 3105 0 2 5 2 7 O 9 8 6 1 4 8970| 5390694/ ta tp 69 11 12 1 3 2 2 1 2 1 691204426205 1980010-356C27 111324111 11918325 122 D 123456789012345678901234567 n 1111112222

Explanation / Answer

R sqr 94.31%

ln(Q) = 1.1658 + 0.6067*ln(L) + 0.3739 * ln(K)

as the labor increases the output increases

as the kapital increases the output increases

so the expected directions for output with respect to labor and kapital are correct

b) elasticity of value w.r.t labor is change in output w.r.t to change in labor

1 unit of ln(l) changes ln(Q) by 0.6067

ln(q) ~ ln(l) *0.6067

q ~ l * exp(0.6067) ~1.8343 * l

q/l ~ 1.8343

similary

ln(q) ~ ln(k) * 0.3739

q ~ k * exp(0.3739) ~ 1.4533 k

q/k ~ 1.4533

c) ln (Q) = 1.1658+LN(200)*0.6067 + LN(500)*0.3739 = 6.7

q = exp(6.7) = 815.61

d) adjusted r sqr is 93.84%

residual sum of squares is 0.8584

rss is less meaning the regression model doesn't have much difference in whatever it has predicted

Can answer only 4 parts as per t&c. Thx.

Q L K LN(Q) LN(L) LN(K) 657.29 162.31 279.99           6.49           5.09           5.63 935.93 214.43 542.5           6.84           5.37           6.30 1110.65 186.44 721.51           7.01           5.23           6.58 1200.89 245.83 1167.68           7.09           5.50           7.06 1052.68 211.4 811.77           6.96           5.35           6.70 3406.02 690.61 4558.02           8.13           6.54           8.42 2427.89 452.79 3069.91           7.79           6.12           8.03 4257.46 714.2 5585.01           8.36           6.57           8.63 1625.19 320.54 1618.75           7.39           5.77           7.39 1272.05 253.17 1562.08           7.15           5.53           7.35 1004.45 236.44 662.04           6.91           5.47           6.50 598.87 140.73 875.37           6.40           4.95           6.77 853.1 145.04 1696.98           6.75           4.98           7.44 1165.63 240.27 1078.79           7.06           5.48           6.98 1917.55 536.73 2109.34           7.56           6.29           7.65 9849.17 1564.83 13989.55           9.20           7.36           9.55 1088.27 214.62 884.24           6.99           5.37           6.78 8095.63 1083.1 9119.7           9.00           6.99           9.12 3175.39 521.74 5686.99           8.06           6.26           8.65 2000 350 1800           7.60           5.86           7.50 5159.31 835.69 5206.36           8.55           6.73           8.56 3378.4 284 3288.72           8.13           5.65           8.10 592.85 150.77 357.32           6.38           5.02           5.88 1601.98 259.91 2031.93           7.38           5.56           7.62 2065.85 497.6 2492.98           7.63           6.21           7.82 2293.87 275.2 1711.74           7.74           5.62           7.45 745.67 137 786.59           6.61           4.92           6.67