Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Obtain a data set that has one dependent variable and at least several independe

ID: 3251990 • Letter: O

Question

Obtain a data set that has one dependent variable and at least several independent variables. Your data set should have more than 30 observations. Run a multiple regression and interpret results

Cost

Sales

Orders

52.95

386

4015

71.66

446

3806

85.58

512

5309

63.69

401

4262

72.81

457

4296

68.44

458

4097

52.46

301

3213

70.77

484

4809

82.03

517

5237

74.39

503

4732

70.84

535

4413

54.08

353

2921

62.98

372

3977

72.3

328

4428

58.99

408

3964

79.38

491

4582

94.44

527

5582

59.74

444

3450

90.5

623

5079

93.24

596

5735

69.33

463

4269

53.71

389

3708

89.18

547

5387

66.8

415

4161

Cost

Sales

Orders

52.95

386

4015

71.66

446

3806

85.58

512

5309

63.69

401

4262

72.81

457

4296

68.44

458

4097

52.46

301

3213

70.77

484

4809

82.03

517

5237

74.39

503

4732

70.84

535

4413

54.08

353

2921

62.98

372

3977

72.3

328

4428

58.99

408

3964

79.38

491

4582

94.44

527

5582

59.74

444

3450

90.5

623

5079

93.24

596

5735

69.33

463

4269

53.71

389

3708

89.18

547

5387

66.8

415

4161

Explanation / Answer

Here sales are dependent variable and two independent variables first cost and second Orders.

I have used excel regression function for the given data.

The regression Output is

Here we can see from ANOVA table that regression is significant as F - value is greater than critical F.Besides that we can see that only cost variable regression coefficient is significant here and the " orders" regression coefficient is not significant here.

The regression equation is

Sales = 65.64 + 4.32 * Cost + 0.01884 * Orders

SUMMARY OUTPUT Regression Statistics Multiple R 0.844797 R Square 0.713682 Adjusted R Square 0.686414 Standard Error 45.65697 Observations 24 ANOVA df SS MS F Significance F Regression 2 109116.3 54558.13 26.1725 1.98E-06 Residual 21 43775.75 2084.559 Total 23 152892 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 65.64218 57.50663 1.141471 0.266523 -53.9494 185.2338 -53.9494 185.2338 Cost 4.323394 1.865387 2.317693 0.030644 0.444109 8.202679 0.444109 8.202679 Orders 0.01884 0.032722 0.575749 0.570904 -0.04921 0.08689 -0.04921 0.08689