Row x-age (y2) Std. Err. Me Std. Err. Me 2 24.5 37 24.12 892.44 32 784 1024 600.
ID: 3259857 • Letter: R
Question
Row x-age (y2) Std. Err. Me Std. Err. Me 2 24.5 37 24.12 892.44 32 784 1024 600.25 0.67089469 0.67089469 581.77 1.255129 1.255129 784 573.12 1.0248086 1.0248086 1024 564.06 0.67089469 0.67089469 484 0.880438340.88043834 1089 412.09 0.71305395 0.71305395 1369 4. 5 6 28 32 29 23.94 670.32 760 638 669.9 568.4 23.75 841 8 9 10 20.3 20.3 28 20.16 564.48 19.7 28 784 412.09 1.0248086 1.0248086 784406.42 1.0248086 1.0248086 400 0.93551795 0.93551795 1296 388.09 1.0879317 1.0879317 35 36 700 709.2 20 1225 13 Options 15 Summary statistics: 16 Column # Sum 318 19 Y-salary(mill) 218.77 6956.74 10220 4821.89 X-age 18 Xeage 20 (x,y) (y2) StatCrunchSessionscs ^ unit 5 stat.html unit5 stat.png -Explanation / Answer
Suppose we take variable x (age).
Statcrunch steps for mean and standard deviation.
Enter the raw data into the spreadsheet. Name the column variable
Select Stat, highlight Summary Stats, and select Columns.
Click on the variable you wish to summarize and click Next>
Deselect any statistics you do not wish to compute. Click Calculate.
--------------------------------------------------------------------------------------------------------------
Standard deviation :
The same steps followed to obtain measures of central tendency from raw data can be used to obtain the measures of dispersion.
--------------------------------------------------------------------------------------------------------------
95% confidence interval for population mean :
If you have raw data, enter them into the spreadsheet. Name the column variable.
Select Stat, highlight T Statistics, select One sample, and then choose either with data or with summary.
. If you chose with data, select the column that has the observations, then click Next>. If you chose with summary, enter the mean, standard deviation, and sample size. Click Next>
Choose the confidence interval radio button. Enter the level of confidence. Click Calculate.
COnclusion of confidence interval : We are 95% confident that the population mean is lies between the lower limit and upper limit.
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.