Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Use the following data to predict the wage you would have to pay to hire a parti

ID: 3262479 • Letter: U

Question

Use the following data to predict the wage you would have to pay to hire a particular individual. The data set is in the excel file New Wage.xlsx that was e-mailed to your msmc account, and is provided in text format at the back of this handout.

a.            Specify a regression equation. Explain how it tests what you want to know.

b.            Estimate a regression equation to explain wages. Attach your excel results.

c.             Tell me about the t-stats, the f-stat and the R squared. What information do they give?

d.            You have a nonwhite female with 20 years in the industry and an MBA. How much will you have to pay to hire her? What if she was a white male?

e.            Does this industry discriminate against nonwhites or/and females? Explain.

Annual Income in $1000

Years of Experience

Education

Sex

M = Male

F = Female

Race

w = White

o = Other

77.80

12

Masters

m

w

77.10

13

Masters

m

w

76.19

15

Masters

m

w

77.52

24

Masters

f

w

66.13

2

Masters

f

w

76.62

22

Masters

m

o

72.56

9

Masters

f

o

78.43

7

Masters

m

w

57.98

12

BA

m

w

56.64

15

BA

m

w

61.63

27

BA

f

w

54.45

23

BA

f

w

65.19

24

BA

m

w

59.00

17

BA

m

w

58.88

1

BA

m

w

51.66

5

BA

f

w

56.23

15

BA

f

o

49.72

2

BA

f

o

55.25

1

BA

m

o

56.15

16

BA

m

o

52.44

18

BA

m

o

57.00

23

BA

m

o

55.73

22

BA

f

o

50.61

18

BA

f

w

51.73

15

BA

f

w

54.66

16

BA

f

w

54.41

18

BA

m

o

59.31

12

BA

m

o

56.65

11

BA

f

w

38.36

10

Some Col

f

w

42.94

12

Some Col

f

w

43.33

13

Some Col

f

o

41.35

15

Some Col

f

o

42.51

22

Some Col

f

o

47.39

19

Some Col

f

o

48.90

23

Some Col

f

w

48.02

12

Some Col

m

w

48.19

15

Some Col

m

o

53.74

16

Some Col

m

w

43.74

12

Some Col

m

o

51.61

12

Some Col

m

w

48.99

10

Some Col

m

w

38.70

7

HiSch

m

w

38.79

12

HiSch

m

o

40.34

13

HiSch

m

o

32.73

15

HiSch

m

o

30.97

6

HiSch

m

w

33.64

4

HiSch

m

w

38.05

8

HiSch

m

o

36.82

16

HiSch

m

o

33.60

13

HiSch

m

o

29.12

16

HiSch

f

o

30.50

2

HiSch

f

w

34.28

4

HiSch

f

w

30.52

6

HiSch

f

w

32.70

1

HiSch

f

w

34.26

2

HiSch

f

w

32.15

7

HiSch

m

w

38.41

5

HiSch

m

w

38.31

5

HiSch

m

w

30.29

3

HiSch

m

w

34.23

8

HiSch

m

w

37.95

9

HiSch

m

o

28.58

19

HiSch

f

o

35.44

34

HiSch

f

o

38.57

32

HiSch

f

w

34.06

12

HiSch

f

w

31.63

19

HiSch

f

w

32.84

23

HiSch

f

o

29.69

15

HiSch

f

o

26.32

2

HiSch

f

o

34.92

7

HiSch

m

w

32.28

4

HiSch

m

w

37.95

17

HiSch

m

w

38.40

18

HiSch

f

w

33.56

2

HiSch

f

w

Annual Income in $1000

Years of Experience

Education

Sex

M = Male

F = Female

Race

w = White

o = Other

77.80

12

Masters

m

w

77.10

13

Masters

m

w

76.19

15

Masters

m

w

77.52

24

Masters

f

w

66.13

2

Masters

f

w

76.62

22

Masters

m

o

72.56

9

Masters

f

o

78.43

7

Masters

m

w

57.98

12

BA

m

w

56.64

15

BA

m

w

61.63

27

BA

f

w

54.45

23

BA

f

w

65.19

24

BA

m

w

59.00

17

BA

m

w

58.88

1

BA

m

w

51.66

5

BA

f

w

56.23

15

BA

f

o

49.72

2

BA

f

o

55.25

1

BA

m

o

56.15

16

BA

m

o

52.44

18

BA

m

o

57.00

23

BA

m

o

55.73

22

BA

f

o

50.61

18

BA

f

w

51.73

15

BA

f

w

54.66

16

BA

f

w

54.41

18

BA

m

o

59.31

12

BA

m

o

56.65

11

BA

f

w

38.36

10

Some Col

f

w

42.94

12

Some Col

f

w

43.33

13

Some Col

f

o

41.35

15

Some Col

f

o

42.51

22

Some Col

f

o

47.39

19

Some Col

f

o

48.90

23

Some Col

f

w

48.02

12

Some Col

m

w

48.19

15

Some Col

m

o

53.74

16

Some Col

m

w

43.74

12

Some Col

m

o

51.61

12

Some Col

m

w

48.99

10

Some Col

m

w

38.70

7

HiSch

m

w

38.79

12

HiSch

m

o

40.34

13

HiSch

m

o

32.73

15

HiSch

m

o

30.97

6

HiSch

m

w

33.64

4

HiSch

m

w

38.05

8

HiSch

m

o

36.82

16

HiSch

m

o

33.60

13

HiSch

m

o

29.12

16

HiSch

f

o

30.50

2

HiSch

f

w

34.28

4

HiSch

f

w

30.52

6

HiSch

f

w

32.70

1

HiSch

f

w

34.26

2

HiSch

f

w

32.15

7

HiSch

m

w

38.41

5

HiSch

m

w

38.31

5

HiSch

m

w

30.29

3

HiSch

m

w

34.23

8

HiSch

m

w

37.95

9

HiSch

m

o

28.58

19

HiSch

f

o

35.44

34

HiSch

f

o

38.57

32

HiSch

f

w

34.06

12

HiSch

f

w

31.63

19

HiSch

f

w

32.84

23

HiSch

f

o

29.69

15

HiSch

f

o

26.32

2

HiSch

f

o

34.92

7

HiSch

m

w

32.28

4

HiSch

m

w

37.95

17

HiSch

m

w

38.40

18

HiSch

f

w

33.56

2

HiSch

f

w

Explanation / Answer

a.            Specify a regression equation. Explain how it tests what you want to know.

Income^ = b0 + b1*male + b2 * white + b3*Masters + b4 *BA +b5*Some col + b5*year_experience

for n categories we need n-1 dummy variabe

For male , male = 1 , for female male = 0

similarly for white white= 1 , for other   white =0

for Masters masters = 1 ,BA = Somecol =0

for BA masters = 0 , BA = 1 , Somecol =0

for Somecol , masters= 0 ,BA =0 ,Somecol = 1

for Hisch masters = 0 , BA = 0 , Somecol =0

b.            Estimate a regression equation to explain wages. Attach your excel results.

Income^ = 28.14 + 4.319*male + 2.11 * white + 39.966*Masters + 21.0502 *BA +11.529*Some col +0.22344*year_experience

c.             Tell me about the t-stats, the f-stat and the R squared. What information do they give?

if t-stat > t-critical ,the variable is significant

if f-stat > f-critical . the model is significant

R^2 gies % of variation explained by the model , 0.9612 (about 96 %)

d.            You have a nonwhite female with 20 years in the industry and an MBA. How much will you have to pay to hire her? What if she was a white male?

white =0 , male = 0 , year_exper = 20 , MAster0 ,BA = 1 , Some col = 0

ncome^ = 28.14 + 4.319*male + 2.11 * white + 39.966*Masters + 21.0502 *BA +11.529*Some col +0.22344*year_experience

=28.14 +21.0502 +0.22344*20 = 53.659

hence 53659 dollars

e.            Does this industry discriminate against nonwhites or/and females? Explain.

p-value for b1 is 1.69*10^(-8) <0.05 , hence Male is significant

p-value for b2 = 0.00365 < 0.05 , hence white is significant

hence this industry discriminates against nonwhites or/and females.

Please rate my solution

Annual Income in $1000 Years of Experience Education Sex Race M = Male w = White F = Female o = Other male White Masters BA Some col years of experience 77.8 12+A4:B4:B69 Masters m w 1 1 1 0 0 12 77.1 13 Masters m w 1 1 1 0 0 13 76.19 15 Masters m w 1 1 1 0 0 15 77.52 24 Masters f w 0 1 1 0 0 24 66.13 2 Masters f w 0 1 1 0 0 2 76.62 22 Masters m o 1 0 1 0 0 22 72.56 9 Masters f o 0 0 1 0 0 9 78.43 7 Masters m w 1 1 1 0 0 7 57.98 12 BA m w 1 1 0 1 0 12 56.64 15 BA m w 1 1 0 1 0 15 61.63 27 BA f w 0 1 0 1 0 27 54.45 23 BA f w 0 1 0 1 0 23 65.19 24 BA m w 1 1 0 1 0 24 59 17 BA m w 1 1 0 1 0 17 58.88 1 BA m w 1 1 0 1 0 1 51.66 5 BA f w 0 1 0 1 0 5 56.23 15 BA f o 0 0 0 1 0 15 49.72 2 BA f o 0 0 0 1 0 2 55.25 1 BA m o 1 0 0 1 0 1 56.15 16 BA m o 1 0 0 1 0 16 52.44 18 BA m o 1 0 0 1 0 18 57 23 BA m o 1 0 0 1 0 23 55.73 22 BA f o 0 0 0 1 0 22 50.61 18 BA f w 0 1 0 1 0 18 51.73 15 BA f w 0 1 0 1 0 15 54.66 16 BA f w 0 1 0 1 0 16 54.41 18 BA m o 1 0 0 1 0 18 59.31 12 BA m o 1 0 0 1 0 12 56.65 11 BA f w 0 1 0 1 0 11 38.36 10 Some Col f w 0 1 0 0 1 10 42.94 12 Some Col f w 0 1 0 0 1 12 43.33 13 Some Col f o 0 0 0 0 1 13 41.35 15 Some Col f o 0 0 0 0 1 15 42.51 22 Some Col f o 0 0 0 0 1 22 47.39 19 Some Col f o 0 0 0 0 1 19 48.9 23 Some Col f w 0 1 0 0 1 23 48.02 12 Some Col m w 1 1 0 0 1 12 48.19 15 Some Col m o 1 0 0 0 1 15 53.74 16 Some Col m w 1 1 0 0 1 16 43.74 12 Some Col m o 1 0 0 0 1 12 51.61 12 Some Col m w 1 1 0 0 1 12 48.99 10 Some Col m w 1 1 0 0 1 10 38.7 7 HiSch m w 1 1 0 0 0 7 38.79 12 HiSch m o 1 0 0 0 0 12 40.34 13 HiSch m o 1 0 0 0 0 13 32.73 15 HiSch m o 1 0 0 0 0 15 30.97 6 HiSch m w 1 1 0 0 0 6 33.64 4 HiSch m w 1 1 0 0 0 4 38.05 8 HiSch m o 1 0 0 0 0 8 36.82 16 HiSch m o 1 0 0 0 0 16 33.6 13 HiSch m o 1 0 0 0 0 13 29.12 16 HiSch f o 0 0 0 0 0 16 30.5 2 HiSch f w 0 1 0 0 0 2 34.28 4 HiSch f w 0 1 0 0 0 4 30.52 6 HiSch f w 0 1 0 0 0 6 32.7 1 HiSch f w 0 1 0 0 0 1 34.26 2 HiSch f w 0 1 0 0 0 2 32.15 7 HiSch m w 1 1 0 0 0 7 38.41 5 HiSch m w 1 1 0 0 0 5 38.31 5 HiSch m w 1 1 0 0 0 5 30.29 3 HiSch m w 1 1 0 0 0 3 34.23 8 HiSch m w 1 1 0 0 0 8 37.95 9 HiSch m o 1 0 0 0 0 9 28.58 19 HiSch f o 0 0 0 0 0 19 35.44 34 HiSch f o 0 0 0 0 0 34 38.57 32 HiSch f w 0 1 0 0 0 32 34.06 12 HiSch f w 0 1 0 0 0 12 31.63 19 HiSch f w 0 1 0 0 0 19 32.84 23 HiSch f o 0 0 0 0 0 23 29.69 15 HiSch f o 0 0 0 0 0 15 26.32 2 HiSch f o 0 0 0 0 0 2 34.92 7 HiSch m w 1 1 0 0 0 7 32.28 4 HiSch m w 1 1 0 0 0 4 37.95 17 HiSch m w 1 1 0 0 0 17 38.4 18 HiSch f w 0 1 0 0 0 18 33.56 2 HiSch f w 0 1 0 0 0 2
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote