These are some questions about deriving Bernoulli\'s Principle. The first pictur
ID: 3278790 • Letter: T
Question
These are some questions about deriving Bernoulli's Principle. The first picture has all of the equations. Please provide a step by step solution. Thank you so much for your assistance. Theory: The figure shows a tank of cross-section 4 filled with water to a height h above a small hole of cross-section a. You will show (see 03a) that the speed vh at which the water level drops depends on the height according to eqn la below. You'll also show (see Q3b) this can be recast as eqn lb (la) & (lb) al You'll also explain (see Q2a) why we can ignore the (a/A) term in the denominator of the radical, arriving at: We also note that v (speed that the water level descends in the tank) is simply the rate at which the water level drops- except we note dhidt will be negative (h decreases) while vh (a speed) is positive. We just need an extra minus to make them equate (eqn 3a below). Then we sub into it eqn 2 from above, transforming it into eqn 3b: dh Un-at (a) & (3b) hence dt=-AV2gh
Explanation / Answer
a.
from bernoulli's equations, two points 1 and 2, haing pressure P1, P2, flow velocities, V1, V2 and height from reference h1 and h2, then these quantitiels can be related as under
rho*gh1 + 0.5*rho*v1^2 + P1 = rho*gh2 + 0.5*rho*v2^2 + P2
now, from the figure
point 1 is a point on the free surface of the water, point 2 is a point on the hole
so P1 = P2 = Patm
rho -> density of the liquid
h1 - h2 = h
so, rhog(h1 - h2) + 0.5*rho*(v1^2 - v2^2) = 0
2*g*h = v2^2 - v1^2
now, volume flow rate at top of container = volume flow rate through the hole
area of cross section of top = A1
area of cross section of hole = A2
so, A1v1 = A2v2
v1 = A2v2/A1
2gh = v2^2 - A2^2 v2^2 / A1^2 = v2^2 [ 1 - (A2/A1)^2]
so v2 = sqroot(2gh/(1 - (A2/A1)^2))
b. v2 = sqroot(2gh/(1 - (A2/A1)^2))
v2 = sqroot(2gh/(A2/A1)^2((A1/A2)^2 - 1) = sqroot(2gh/((A1/A2)^2 - 1) / (A2/A1) = (A1/A2) * sqroot(2gh/((A1/A2)^2 - 1)
c. now, if A1 > > A2
then A2/A1 = 0
then v2 = sqroot(2gh/(1 - (A2/A1)^2)) = (A1/A2) * sqroot(2gh)
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.