Find the volume of the solid that is generated when the region in the first quad
ID: 3285393 • Letter: F
Question
Find the volume of the solid that is generated when the region in the first quadrant bounded by y= x^2/9 , y=1 and x=0 is revolved about the line y=-1 .Explanation / Answer
a) Volume V= piS(x=0 to pi/2)sin^2(x)dx=.....(S=the sign of integration) (pi/2)S(x=0 to pi/2)(1-cos(2x))dx= (pi/2)(x)(x=0 to pi/2)= (pi^2)/4 b) Volume V= piS(y=0 to 1)(pi/2-arcsiny)^2(dy) Let y=sinz, then dy=(cosz)dz=> V=piS(z=0 to pi/2)[(pi/2)^2-(pi)z+z^2] cosz(dz)=> V=[(pi^3)/4]S(z=0 to pi/2)cosz(dz)- (pi^2)S(z=0 to pi/2)zcosz(dz)+ (pi)S(z=0 to pi/2)(z^2)cosz(dz)=> V=pi(pi^2+pi+2) c) The volume V= pi(2^2)(pi/2)-pi(pi/2)-piS(x=0 to pi/2)[ 1-sinx)^2]dx=> V=(3/2)pi^2-piS(x=0 to pi/2)( 1-2sinx+sin^2x)dx=> V=(3/2)pi^2-3pi^2/4+2pi=> V=(3pi^2)/4+2pi=> V=pi(3pi/4+2)
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.