Multivariate Tests a Effect Value F Hypothesis df Error df Sig. Partial Eta Squa
ID: 3292764 • Letter: M
Question
Multivariate Testsa
Effect
Value
F
Hypothesis df
Error df
Sig.
Partial Eta Squared
Intercept
Pillai's Trace
.994
9999.866b
3.000
192.000
.000
.994
Wilks' Lambda
.006
9999.866b
3.000
192.000
.000
.994
Hotelling's Trace
156.248
9999.866b
3.000
192.000
.000
.994
Roy's Largest Root
156.248
9999.866b
3.000
192.000
.000
.994
x1
Pillai's Trace
.612
28.357
6.000
386.000
.000
.306
Wilks' Lambda
.389
38.678b
6.000
384.000
.000
.377
Hotelling's Trace
1.573
50.072
6.000
382.000
.000
.440
Roy's Largest Root
1.572
101.152c
3.000
193.000
.000
.611
x3
Pillai's Trace
.187
14.698b
3.000
192.000
.000
.187
Wilks' Lambda
.813
14.698b
3.000
192.000
.000
.187
Hotelling's Trace
.230
14.698b
3.000
192.000
.000
.187
Roy's Largest Root
.230
14.698b
3.000
192.000
.000
.187
x1 * x3
Pillai's Trace
.127
4.363
6.000
386.000
.000
.064
Wilks' Lambda
.875
4.415b
6.000
384.000
.000
.065
Hotelling's Trace
.140
4.465
6.000
382.000
.000
.066
Roy's Largest Root
.120
7.708c
3.000
193.000
.000
.107
a. Design: Intercept + x1 + x3 + x1 * x3
b. Exact statistic
c. The statistic is an upper bound on F that yields a lower bound on the significance level.
Write up the results of the above multivariate test
Multivariate Testsa
Effect
Value
F
Hypothesis df
Error df
Sig.
Partial Eta Squared
Intercept
Pillai's Trace
.994
9999.866b
3.000
192.000
.000
.994
Wilks' Lambda
.006
9999.866b
3.000
192.000
.000
.994
Hotelling's Trace
156.248
9999.866b
3.000
192.000
.000
.994
Roy's Largest Root
156.248
9999.866b
3.000
192.000
.000
.994
x1
Pillai's Trace
.612
28.357
6.000
386.000
.000
.306
Wilks' Lambda
.389
38.678b
6.000
384.000
.000
.377
Hotelling's Trace
1.573
50.072
6.000
382.000
.000
.440
Roy's Largest Root
1.572
101.152c
3.000
193.000
.000
.611
x3
Pillai's Trace
.187
14.698b
3.000
192.000
.000
.187
Wilks' Lambda
.813
14.698b
3.000
192.000
.000
.187
Hotelling's Trace
.230
14.698b
3.000
192.000
.000
.187
Roy's Largest Root
.230
14.698b
3.000
192.000
.000
.187
x1 * x3
Pillai's Trace
.127
4.363
6.000
386.000
.000
.064
Wilks' Lambda
.875
4.415b
6.000
384.000
.000
.065
Hotelling's Trace
.140
4.465
6.000
382.000
.000
.066
Roy's Largest Root
.120
7.708c
3.000
193.000
.000
.107
a. Design: Intercept + x1 + x3 + x1 * x3
b. Exact statistic
c. The statistic is an upper bound on F that yields a lower bound on the significance level.
Explanation / Answer
Effect due to intercept x1,x 3 and intraction effect between x1 and x3 is significant as sig p value is 0.000 this means there is significant difference between x1, x2 and intraction effect x1 x2
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.