Generate 200 random observations from the 3-dimensional multivariate normal dist
ID: 3302778 • Letter: G
Question
Generate 200 random observations from the 3-dimensional multivariate normal distribution having mean vector µ = (0, 1, 2) and covariance matrix
=
using the Choleski factorization method. Use the R pairs plot to graph an array of scatter plots for each pair of variables. For each pair of variables, 96 Statistical Computing with R (visually) check that the location and correlation approximately agree with the theoretical parameters of the corresponding bivariate normal distribution.
1.0 -0.5 0.5 -0.5 1.0 -0.5 0.5 -0.5 1Explanation / Answer
a=matrix(c(1,-.5,.5,-.5,1,-.5,.5,-.5,1),3,3)
chol(a)
library(MASS)
sim=mvrnorm(200,c(0,0,0),a)
inv=solve(a)
inv
fin=matrix(c(rep(0,600)),200,3)
for(i in 1:200)
{
fin[i,]=inv%*%(sim[i,])+c(0,1,2)
}
fin
#fin gives simulated values from the required muktivariate normal distribution
m=rep(0,3)
for(i in 1:3)
{
m[i]=mean(fin[,i])
}
m
var(cbind(fin[,1:2]))
var(cbind(fin[,2:3]))
var(cbind(fin[,1],fin[,3]))
OUTPUT:
> a=matrix(c(1,-.5,.5,-.5,1,-.5,.5,-.5,1),3,3)
> chol(a)
[,1] [,2] [,3]
[1,] 1 -0.5000000 0.5000000
[2,] 0 0.8660254 -0.2886751
[3,] 0 0.0000000 0.8164966
> library(MASS)
> sim=mvrnorm(200,c(0,0,0),a)
> inv=solve(a)
> inv
[,1] [,2] [,3]
[1,] 1.5 0.5 -0.5
[2,] 0.5 1.5 0.5
[3,] -0.5 0.5 1.5
> fin=matrix(c(rep(0,600)),200,3)
> for(i in 1:200)
+ {
+ fin[i,]=inv%*%(sim[i,])+c(0,1,2)
+ }
> fin
[,1] [,2] [,3]
[1,] -0.623956757 0.50514208 1.37760399
[2,] -0.167635624 1.72504797 1.90768418
[3,] 1.993734661 0.53047809 3.03267829
[4,] -0.630488179 2.45258703 1.19982067
[5,] 0.598269971 2.94607029 3.64387058
[6,] -0.622801137 1.68712912 2.94484683
[7,] 0.884584378 1.92770524 1.13780734
[8,] -0.758742719 0.17700156 2.29815135
[9,] -1.140797332 0.42779202 1.44969890
[10,] -0.224241872 1.87776895 1.56125147
[11,] 0.452714081 0.83660468 2.85139807
[12,] -1.646939546 0.35178381 1.99346900
[13,] 1.445202355 2.53897680 3.02709808
[14,] 0.636635964 1.94631069 3.24391554
[15,] -1.930883132 0.49563518 1.78811095
[16,] -1.183756666 -1.31509419 0.27030722
[17,] -0.693052752 2.14813145 2.69976939
[18,] 0.095275974 0.90604205 3.18051912
[19,] -0.322108826 0.07595851 1.58233027
[20,] -0.570078764 -0.38165954 2.03309613
[21,] -0.633800199 1.24617843 2.19411994
[22,] -0.096817584 1.48470626 1.40523165
[23,] 0.618373996 2.33502761 2.91112499
[24,] -1.530052642 1.45444663 3.40919268
[25,] -0.167945914 1.42275143 3.94251389
[26,] -0.543176206 1.20970164 0.90558117
[27,] 0.708545252 1.08531851 2.15957082
[28,] -0.477515370 0.62181477 2.21527622
[29,] -0.695239052 2.25767634 1.38486613
[30,] -1.342374879 -0.74872725 1.10049466
[31,] 0.700366483 4.04508071 3.22842971
[32,] -0.467094925 0.77145490 1.52895589
[33,] 0.522693170 2.33572966 2.00855036
[34,] -1.558542650 0.03035019 2.38167829
[35,] 0.859421506 0.33422816 1.77332960
[36,] -0.256724329 4.49074623 2.37931634
[37,] 0.878644607 3.81180711 3.57762239
[38,] 0.356742938 0.37348433 1.44568217
[39,] 0.072884542 3.01709726 4.07755087
[40,] -1.273223327 1.40487966 4.31509441
[41,] 1.052195618 2.47584388 -0.04644935
[42,] -0.642861005 -0.28825063 2.50302416
[43,] 0.541145944 3.57412229 2.05078217
[44,] 0.283187459 -0.85809702 1.44958629
[45,] -0.288222829 0.79906730 3.19561602
[46,] -1.001344154 -0.27762362 0.91358629
[47,] 1.053395843 0.20734450 3.52097485
[48,] -1.572104868 0.54943232 0.48047220
[49,] 0.080342511 0.65430291 1.98942663
[50,] -1.929291570 -0.70013819 0.18693936
[51,] 1.139185717 0.21801456 1.10988611
[52,] -0.372056612 -0.26969031 0.52920044
[53,] -1.002193231 1.91223229 3.93162271
[54,] 0.957463260 0.91132100 4.05250002
[55,] -1.573443433 0.97575125 1.71384562
[56,] -0.987061011 0.22064068 2.17314210
[57,] -1.031167981 -0.81181454 2.02330908
[58,] 0.713961072 2.32920160 0.55036079
[59,] 0.224132276 3.80041568 5.04762889
[60,] 1.398190187 -0.05755033 1.40672709
[61,] 0.162083396 -1.25965003 2.39210836
[62,] 0.695517106 3.90319266 1.82804021
[63,] -1.106672800 0.14518276 3.43804291
[64,] 0.221051007 -0.15682623 0.94537375
[65,] 0.314705133 2.61769464 4.19716113
[66,] -1.567802168 0.98161672 4.47486163
[67,] -1.306279196 2.31299595 3.41948663
[68,] 1.205809686 1.69415896 1.75969000
[69,] -0.319766296 1.11480800 1.69846810
[70,] -0.891263234 2.23141531 2.86770226
[71,] 0.259816194 0.91521023 0.80360101
[72,] 0.176035166 1.36117474 4.42802035
[73,] 1.737185577 0.45274663 -1.36087895
[74,] 1.153052503 2.89540978 1.42088420
[75,] -2.199708476 1.85137904 4.63169115
[76,] -0.499932909 0.91213665 1.98396456
[77,] 1.079188814 1.03322159 0.78480606
[78,] 1.819573740 0.75220071 2.06235478
[79,] -1.244477750 0.57062997 3.92750428
[80,] 0.497893067 -1.05824163 0.32249468
[81,] 2.176308322 1.91509459 0.81357922
[82,] -2.190398297 1.01680983 1.72291802
[83,] 0.865682231 1.80750963 0.13965361
[84,] -1.364233063 -1.17284860 2.76143151
[85,] -1.219977559 -1.57275138 0.88266540
[86,] 0.240890201 0.60603235 3.06938186
[87,] 1.247765972 2.57748745 1.82170874
[88,] 0.330868247 2.58829301 2.54454584
[89,] 0.240400326 0.85351819 0.80085529
[90,] -2.188153701 1.83758017 3.94639101
[91,] 0.662263326 0.83085636 2.89078672
[92,] -0.236725089 0.24910239 0.48095285
[93,] -0.829641889 1.68199108 2.12816048
[94,] -0.907495140 -1.53364600 0.58388732
[95,] 0.711829733 0.61229247 1.39954572
[96,] 0.627135791 3.44916769 2.76510212
[97,] 2.473029284 0.41563352 0.77865548
[98,] -0.453179866 -0.13506984 0.80878329
[99,] 1.239654665 1.87916253 -0.15262535
[100,] 0.795557180 -0.13150917 1.05567308
[101,] 0.965107502 -0.18327461 0.77555431
[102,] -4.018981035 -0.24353633 2.01800558
[103,] 1.329669949 2.82526206 2.77725557
[104,] 0.893922535 0.37677531 0.81527641
[105,] 0.157884523 0.61447187 1.88556330
[106,] 0.136357079 -1.14523503 -1.15446423
[107,] -1.743337522 -0.17682973 1.69518223
[108,] -0.225866451 -0.24539347 0.25800178
[109,] 0.625122840 0.56918070 1.52702313
[110,] 0.107272656 -0.79703299 0.70956688
[111,] 1.030401756 1.07819985 2.74573784
[112,] -0.234860813 1.49438649 0.68984651
[113,] 0.688380150 4.23092113 3.70106495
[114,] -1.277624862 0.05406976 3.43104808
[115,] -0.727047391 1.07376004 2.13862707
[116,] -1.091312900 0.48951642 1.42175678
[117,] 0.595053771 3.03512467 2.73903247
[118,] -0.888063354 0.54642956 2.42429816
[119,] -0.104747510 1.35509147 1.78688133
[120,] -0.904546379 1.36828753 1.84268203
[121,] -0.536761641 -0.25024960 2.36339485
[122,] 1.199677139 0.28136305 -0.77944235
[123,] 0.269859118 1.31873278 3.47179772
[124,] 0.105249721 0.72689660 0.49306434
[125,] 1.153385031 1.32177855 0.81038827
[126,] 3.611227008 1.36492895 0.56867008
[127,] -0.657077520 -0.46037036 1.02224174
[128,] 1.263587260 -0.05738775 2.87190183
[129,] -1.163150430 -0.50116371 0.62819345
[130,] -1.384297579 -1.19156216 -0.03101212
[131,] -0.423406585 2.05501994 2.48065223
[132,] -1.717866758 -0.56340589 1.33437479
[133,] -0.434391841 0.72801524 2.15425676
[134,] 1.553222419 0.55732977 0.78255285
[135,] 0.375074507 1.75690231 1.75568623
[136,] 2.942454684 2.02110103 1.70369408
[137,] -1.116208916 -0.36491553 3.05373288
[138,] 0.272529331 -0.01823784 1.07140619
[139,] -0.495680184 1.23197432 2.00063869
[140,] 0.711395000 2.06697666 1.81218932
[141,] -0.170017993 -0.41848592 0.40802757
[142,] -0.529487087 0.88390551 3.60928055
[143,] -1.638413247 -0.38038418 1.04165134
[144,] -2.421616325 1.14071279 4.51828964
[145,] -1.009703654 1.55519808 3.21440231
[146,] 1.322934023 0.97118544 -0.20121820
[147,] 1.796991533 2.34375582 0.85941002
[148,] -1.138300809 -0.43116917 2.44312633
[149,] 1.456810814 2.91559219 0.50760623
[150,] -1.316725822 2.62298192 3.69988644
[151,] 0.547369212 0.86433237 1.85454531
[152,] -0.378212309 0.64953528 2.88615417
[153,] -2.255802610 -0.06504739 3.06405674
[154,] 1.440948297 0.51450978 1.07721279
[155,] 0.570008414 0.79777506 0.52589307
[156,] -1.000261718 0.18780702 1.27047529
[157,] -0.607782069 1.06019006 2.31645818
[158,] 0.078674965 0.72366175 3.99111334
[159,] 0.550683625 1.56651240 2.16309257
[160,] 0.611507227 0.78093816 3.93593413
[161,] -0.781996598 2.25494970 4.56839198
[162,] -1.168058034 0.77338779 3.55612027
[163,] 0.799700704 0.52551095 1.19594549
[164,] 1.575984987 2.08152053 1.61531745
[165,] -0.444010838 2.23316925 4.39022878
[166,] 0.451781418 1.94786607 4.49131492
[167,] 1.820649007 1.34871068 1.84915535
[168,] 0.486116825 -0.08966674 2.29185943
[169,] -1.597448337 1.99343650 2.54283071
[170,] 1.406026501 1.10381707 2.98398717
[171,] -0.771297698 1.65729296 4.27832600
[172,] -0.823815019 1.57210561 0.15588529
[173,] 0.455494017 0.50858806 2.14455073
[174,] -0.733691192 2.45613400 4.26892838
[175,] -1.561767959 0.61493427 1.74118854
[176,] 1.286009567 2.61273101 2.13418176
[177,] -0.669213439 0.88904660 2.00011447
[178,] -0.246640602 -0.49170688 0.36588276
[179,] 1.538600648 0.88839563 4.32057647
[180,] 0.115351608 1.65555212 1.88572084
[181,] -0.244463727 2.47929964 5.08157513
[182,] 1.772383685 3.64204787 4.26612021
[183,] 0.179553152 1.54936635 3.01447353
[184,] 0.498189792 0.74987854 1.14459587
[185,] -0.818815545 2.77259575 3.37003140
[186,] 0.001236091 0.48592155 0.30838826
[187,] -1.305836254 1.04304205 3.01295430
[188,] -1.969358990 0.57789784 3.51117417
[189,] -0.117007471 0.87852640 0.96208771
[190,] -2.068885634 -0.72010732 1.86110613
[191,] 0.133402910 1.10128123 4.31822071
[192,] -0.620241746 0.49035509 0.42660427
[193,] 1.555645427 2.93196781 3.98096273
[194,] 0.207132669 1.44300830 2.56339129
[195,] -0.531332263 0.87646155 1.44038630
[196,] -0.450852624 0.69844353 2.10723886
[197,] -0.578033524 -0.22342311 0.93893172
[198,] 1.939771679 1.33714619 2.55683098
[199,] -0.902142641 1.35310907 1.88484939
[200,] 0.983640670 2.71220474 3.89316641
> #fin gives simulated values from the required muktivariate normal distribution
> m=rep(0,3)
> for(i in 1:3)
+ {
+ m[i]=mean(fin[,i])
+ }
> m
[1] -0.06864944 1.05297530 2.09011268
>
> var(cbind(fin[,1:2]))
[,1] [,2]
[1,] 1.2687155 0.4193914
[2,] 0.4193914 1.4407019
> var(cbind(fin[,2:3]))
[,1] [,2]
[1,] 1.4407019 0.6443866
[2,] 0.6443866 1.6897128
> var(cbind(fin[,1],fin[,3]))
[,1] [,2]
[1,] 1.2687155 -0.2288229
[2,] -0.2288229 1.6897128
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.