Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Source | SS df MS Number of obs = 950 -------------+----------------------------

ID: 3310591 • Letter: S

Question

Source |       SS           df           MS                      Number of obs   =       950

-------------+----------------------------------                   F(2, 947)          =    172.50

       Model | 2.6336e+11         2 1.3168e+11          Prob > F            =    0.0000

    Residual | 7.2289e+11       947   763350544         R-squared          =    0.2670

-------------+----------------------------------                   Adj R-squared   =    0.2655

        Total | 9.8625e+11       949 1.0393e+09          Root MSE         =     27629

------------------------------------------------------------------------------

       SHW |      Coef.            Std. Err.      t      P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

         NFM |   778.9416   374.1405     2.08   0.038     44.70131    1513.182

      THISQ |   4.84e-08   2.65e-09    18.29   0.000     4.32e-08    5.36e-08

       _cons |   18032.74   1996.962     9.03   0.000     14113.76    21951.73

------------------------------------------------------------------------------

Interpet the results of the above data

Explanation / Answer

The test statistic MS(model)/MS(residual) is following F(2,947) distribution(this is a property of these type of tables).From here,we can tell that there are 2 independent predictor variables in the model.And,the error degrees of freedom is=947.So,total degrees of freedom=947+2=949.So the sample size is 1000.Now,p-value of the F statistics is 0.0000<<<0.05,which means the model is significant.But,there is a massive problem in this analysis.R-sq value is as low as 0.2655,which means that R^2 is able to explain only 26.55% of the total variation present in data.So,it will not give correct prediction for future observations,since the future observations will not be properly explained by he model.For this reason,the confidence interval that has been found,can not be used for future decisive purposes.The regresseion line fitted here is linear.For linear regression we assume that homoscedasticity and autocorrelation is absent and the error terms identically and independently follow normal distribution. May be,one or more of these assumptions are not valid for the data.May be,the errors are not normally distributed.Hence,the confidence interval that has found can not be used for future.We have to model the the data correctly for analysis purpose.From table only,we can see that model SS is only 1/3 of the residuall SS,but for correct models,model SS should be more than the residual SS. So,even if we interprete the variables,it has no meaning as the model is not correct. coef values of a variable is actually change in response per unit increase in value of the corresponding variable.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote