Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Use homogeneity data and relative and conditional distribution data to create an

ID: 3325249 • Letter: U

Question

Use homogeneity data and relative and conditional distribution data to create analogy for medical field (placebo-based blind studies)????????? Help

Table I

M&M’s color

Observed count (Oi)

Frequency

Homogeneity %

Expected count (Ei)

(Oi - Ei)

(Oi - Ei)2

red

88

0.1306

0.1667

112.3333

-24.3333

592.1111

5.271

orange

154

0.2285

0.1667

112.3333

41.6667

1736.111

15.455

yellow

83

0.1231

0.1667

112.3333

-29.3333

860.4444

7.6597

green

115

0.1706

0.1667

112.3333

2.6667

7.1111

0.0633

blue

138

0.2047

0.1667

112.3333

25.6667

658.7778

5.8645

brown

96

0.1424

0.1667

112.3333

-16.3333

266.7778

2.3749

Total

674

36.6884

Now we determine the critical value using Table VIII. All goodness-of-fit tests are right-tailed tests, so the critical value is with k – 1 degrees of freedom.

To minimize Type I error, we use 0.10, 0.05, and 0.01 level of significance with df = 6 – 1 = 5 degrees of freedom.

1)      0.10 level of significance

9.236

2)      0.05 level of significance

3)      0.01 level of significance

Because the test statistic, 36.6884 does lie in the critical region, we reject the null hypothesis. That means, the sample evidence suggests there is sufficient evidence at the = 0.10, = 0.05, and = 0.001 level of significance to conclude the distribution of M&M’s colors does not follow Homogeneity distribution.

Table IV

M&M’s

Type

M&M’s color count

Total

Relative frequency

red

orange

yellow

green

blue

brown

Plain

88

154

83

115

138

96

674

0.606115

Peanut

41

109

78

81

81

48

438

0.393885

Total

129

263

161

196

219

144

1112

Relative frequency

0.116

0.236

0.145

0.176

0.197

0.129

1

A conditional distribution lists the relative frequency of each category of the response variable, given a specific value of the explanatory variable in the contingency table.

First, we compute the relative frequency for each type of M&M’s, given the color of M&M’s in each cell.

Table V

M&M’s

Type

M&M’s color count

Total

red

orange

yellow

green

blue

brown

Plain

=0.682

=0.586

=0.516

0.587

=0.630

=0.666

674

Peanut

=0.318

=0.414

=0.484

=0.413

=0.369

= 0.333

438

Total

129

263

161

196

219

144

1112

Use homogeneity data and relative and conditional distribution data to create analogy for medical field (placebo-based blind studies)????????? Help

M&M’s color

Observed count (Oi)

Frequency

Homogeneity %

Expected count (Ei)

(Oi - Ei)

(Oi - Ei)2

red

88

0.1306

0.1667

112.3333

-24.3333

592.1111

5.271

orange

154

0.2285

0.1667

112.3333

41.6667

1736.111

15.455

yellow

83

0.1231

0.1667

112.3333

-29.3333

860.4444

7.6597

green

115

0.1706

0.1667

112.3333

2.6667

7.1111

0.0633

blue

138

0.2047

0.1667

112.3333

25.6667

658.7778

5.8645

brown

96

0.1424

0.1667

112.3333

-16.3333

266.7778

2.3749

Total

674

36.6884

Explanation / Answer

10% -   9.23635

5% - 11.07049

1% - 15.08627

since TS = 36.688 > critical values

we reject the nulll at all alpha

, the sample evidence suggests there is sufficient evidence at the = 0.10, = 0.05, and = 0.001 level of significance to conclude the distribution of M&M’s colors does not follow Homogeneity distribution.

p Oi Ei (Oi-Ei)^2/Ei 0.166667 88 112.333333 5.271018793 0.166667 154 112.333333 15.45499505 0.166667 83 112.333333 7.659742829 0.166667 115 112.333333 0.06330366 0.166667 138 112.333333 5.864490603 0.166667 96 112.333333 2.37487636 1 674 674 36.6884273 10% 1% 5% critical value 11.07049769 9.2363569 15.08627 p-value 6.91557E-07