Y X1 X2 X3 48 50 51 2.3 57 36 46 2.3 66 40 48 2.2 70 41 44 1.8 89 28 43 1.8 36 4
ID: 3325377 • Letter: Y
Question
Y X1 X2 X3
48 50 51 2.3
57 36 46 2.3
66 40 48 2.2
70 41 44 1.8
89 28 43 1.8
36 49 54 2.9
46 42 50 2.2
54 45 48 2.4
26 52 62 2.9
77 29 50 2.1
89 29 48 2.4
67 43 53 2.4
47 38 55 2.2
51 34 51 2.3
57 53 54 2.2
66 36 49 2.0
79 33 56 2.5
88 29 46 1.9
60 33 49 2.1
49 55 51 2.4
77 29 52 2.3
52 44 58 2.9
60 43 50 2.3
86 23 41 1.8
43 47 53 2.5
34 55 54 2.5
63 25 49 2.0
72 32 46 2.6
57 32 52 2.4
55 42 51 2.7
59 33 42 2.0
83 36 49 1.8
76 31 47 2.0
47 40 48 2.2
36 53 57 2.8
80 34 49 2.2
82 29 48 2.5
64 30 51 2.4
37 47 60 2.4
42 47 50 2.6
66 43 53 2.3
83 22 51 2.0
37 44 51 2.6
68 45 51 2.2
59 37 53 2.1
92 28 46 1.8
Explanation / Answer
(a) The forward stepwise regression procedure can be done using the multiple linear regression method
Once the dataset is loaded in R we can us the lm() function to determine how y can be predicted using the 3 varaibles X1,X2 and X3. Once we get the equation as Y = B0 + B1*X1 + B2*X2 + B3*X3 , we can do tests of significance on the individual coefficients to ascertain which variable is coefficient in predicting the value of Y for the population. We can then eliminate those variables which are not significant whie F values are less than 3.0 and 2.9 in predicting Y
(b) To find out the level of significance upto which the F level of 3.0 is significant, we have to find the area to the right of F = 3.0 on the F curvewhich we can find using technology or using the F dist table
(c) This can be done in the open source software R using the lm() and the glm() functions, load the given data as a dataframe and lookup the documentation in R as to what input parameters are needed, we can then get the desired output
(d) This can again be done in the open source software R using the lm() and the glm() functions, load the given data as a dataframe and lookup the documentation in R as to what input parameters are needed, we can then get the desired output
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.