Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

QUE a) 15 samples of n = 8 have been taken from a cleaning operation. The averag

ID: 3329153 • Letter: Q

Question

QUE

a) 15 samples of n = 8 have been taken from a cleaning operation. The average sample range for the 20 samples was 0.016 minute, and the average mean was 3 minutes. Determine the three- sigma control limits for this process. (3)

(b) 15 samples of n = 10 observations have been taken from a milling process. The average sample range is 0.01 centimetres. Determine upper and lower control limits for sample ranges. (3)

(c) Determine which of these three processes are capable: (9)

Process

Mean

Standard

Deviation

Lower

Specification

Upper

Specification

1

6.0

0.14

5.5

6.7

2

7.5

0.10

7.0

8.0

3

4.6

0.12

4.3

4.9

Table 1: Control Chart parameters Number of Observations in Subgroup

n

_

Factor for X Chart

A2

FACTORS FOR R CHARTS

Lower Control Limit

D3

FACTORS FOR R CHARTS

Upper Control Limit

D4

2

1.88

0

3.27

3

1.02

0

2.57

4

0.73

0

2.28

5

0.58

0

2.11

6

0.48

0

2.00

7

0.42

0.08

1.92

8

0.37

0.14

1.86

9

0.34

0.18

1.82

10

0.31

0.22

1.78

11

0.29

0.26

1.74

12

0.27

0.28

1.72

13

0.25

0.31

1.69

14

0.24

0.33

1.67

15

0.22

0.35

1.65

16

0.21

0.36

1.64

17

0.20

0.38

1.62

18

0.19

0.39

1.61

19

0.19

0.40

1.60

20

0.18

0.41

1.59

STION B3 [15 Marks]

A decision maker faced with four decision alternatives and four sates of nature develops the following profit payoff table.

States of nature Decision alternative

S_1

S_2

S_3

S_4

d_1

14

9

10

5

d_2

11

10

8

7

d_3

9

10

10

11

d_4

8

10

11

13

Process

Mean

Standard

Deviation

Lower

Specification

Upper

Specification

1

6.0

0.14

5.5

6.7

2

7.5

0.10

7.0

8.0

3

4.6

0.12

4.3

4.9

Table 1: Control Chart parameters Number of Observations in Subgroup

n

_

Factor for X Chart

A2

FACTORS FOR R CHARTS

Lower Control Limit

D3

FACTORS FOR R CHARTS

Upper Control Limit

D4

2

1.88

0

3.27

3

1.02

0

2.57

4

0.73

0

2.28

5

0.58

0

2.11

6

0.48

0

2.00

7

0.42

0.08

1.92

8

0.37

0.14

1.86

9

0.34

0.18

1.82

10

0.31

0.22

1.78

11

0.29

0.26

1.74

12

0.27

0.28

1.72

13

0.25

0.31

1.69

14

0.24

0.33

1.67

15

0.22

0.35

1.65

16

0.21

0.36

1.64

17

0.20

0.38

1.62

18

0.19

0.39

1.61

19

0.19

0.40

1.60

20

0.18

0.41

1.59

Explanation / Answer

a. n=20

R= minute

X_bar = 3 minute

For mean:

LCL = X_bar - A2*R, A2=0.37 for n=8

= 3-0.37*0.016 = 2.994 minute

UCL = X_bar + A2*R

= 3-0.37*0.016 = 3.006 minute

For range:

LCL = R*D3 = 0.14*0.016 = 0.0022 minute

UCL = R*D4 = 1.86*0.016 = 0.0298 minute

b.

n=10

R=0.01

LCL = R*D3 = 0.01*0.22 = 0.0022 cm

UCL = R*D4 = 0.01*1.78 = 0.0178 cm

c.

Process

Mean

Standard

Deviation

Lower

Specification

Upper

Specification

Lower Control Limit

1

6.0

0.14

5.5

6.7

6-0.14*3=5.58

2

7.5

0.10

7.0

8.0

7.5-3*0.1=7.2

3

4.6

0.12

4.3

4.9

4.6-3*0.12=4.24

Capable same reason as above

Process

Mean

Standard

Deviation

Lower

Specification

Upper

Specification

Lower Control Limit

Upper Control Limit Result

1

6.0

0.14

5.5

6.7

6-0.14*3=5.58

6+3*0.14=6.42 Not capable as USL is beyond UCL

2

7.5

0.10

7.0

8.0

7.5-3*0.1=7.2

7.5+3*0.1=7.8 Capable as LSL and USL are within LCL and UCL

3

4.6

0.12

4.3

4.9

4.6-3*0.12=4.24

4.6+3*0.12=4.96

Capable same reason as above

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote