The Federal Deposit Insurance Corporation (FDIC) releases data on bank failures.
ID: 3332051 • Letter: T
Question
The Federal Deposit Insurance Corporation (FDIC) releases data on bank failures. Following are data on the number of U.S. bank failures in a given year and the total amount of bank deposits (in $ millions) involved in such failures for a given year. Use these data to develop a simple regression forecasting model that attempts to predict the failed bank assets involved in bank closings by the number of bank failures. Compute a Durbin-Watson statistic for this regression model and determine whether significant autocorrelation is present. Let = .05.
*(Round your answer to the nearest integer.)
**(Round your answer to 2 decimal places.)
The regression equation is: Failed Bank Assets =
* +
** Number of Failures
D =
**
Critical values of D: Using k = 1, n = 18, and = .05,
dL =
** and dU =
**
Since D =
** is
dU , the decision is
. There
significant autocorrelation.
Year Failures Failed Bank Assets 1 11 8,189 2 7 104 3 34 1,862 4 45 4,137 5 79 36,394 6 118 3,034 7 144 7,609 8 201 7,538 9 221 56,620 10 206 28,507 11 159 10,739 12 108 43,552 13 100 16,915 14 42 2,588 15 11 825 16 6 753 17 5 186 18 1 27Explanation / Answer
Line of Regression Y on X i.e Y = bo + b1 X
calculation procedure for regression
mean of X = X / n = 83.2222
mean of Y = Y / n = 12754.3889
(Xi - Mean)^2 = 100155.11106
(Yi - Mean)^2 = 4932633422.28
(Xi-Mean)*(Yi-Mean) = 13689502.44438
b1 = (Xi-Mean)*(Yi-Mean) / (Xi - Mean)^2
= 13689502.44438 / 100155.11106
= 136.68301
bo = Y / n - b1 * X / n
bo = 12754.3889 - 136.68301*83.2222 = 1379.32777
value of regression equation is, Y = bo + b1 X
Y'=1379.32777+136.68301* X
Failed Bank Assets = 1379.32777 + 136.68301 * Number of Failures
Using the excel output on regression for residual calculation,
Durbin-Watson = 2.49
dL = 1.158
dU = 1.391
If d < dL reject H0 : = 0
If d > dU do not reject H0 : = 0
If dL < d < dU test is inconclusive.
here, we are at d > dU, 2.49 > 1.391 i.e we reject Ho
X Y (Xi - Mean)^2 (Yi - Mean)^2 (Xi-Mean)*(Yi-Mean) 11 8,189 5216.04617 20842776 329722.4302 7 104 5809.82377 160032339 964240.4728 34 1,862 2422.82497 118644136 536147.3449 45 4,137 1460.93657 74259391 329375.562 79 36,394 17.82697 558831213 -99811.16599 118 3,034 1209.49537 94485960 -338053.7411 144 7,609 3693.94097 26475027 -312725.4175 201 7,538 13871.61017 27210713 -614374.8086 221 56,620 18982.72217 1.924E+09 6043707.393 206 28,507 15074.38817 248144756 1934070.935 159 10,739 5742.27497 4061792.4 -152721.737 108 43,552 613.93937 948492849 763097.0483 100 16,915 281.49457 17310685 69805.90091 42 2,588 1699.26977 103355463 419080.9165 11 825 5216.04617 142310320 861566.711 6 753 5963.26817 144033336 926773.6539 5 186 6118.71257 157964400 983127.0302 1 27 6760.49017 161986428 1046473.916Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.