full answers please thank you Q. 3 The following are the design matrix X, respon
ID: 3333492 • Letter: F
Question
full answers please thank you Q. 3 The following are the design matrix X, response vector Y and (X'X)1 for a multiple 2 of 3 regression model 6 -0.15 0.40 0.00 -0.15 0.00 005 0.65-0.20 X= -0.20 a) Calculate the least squares estimates of the model Y = ++ Axit A½x2+ b) Calculate the fitted values from your model and hence calculate an unbiased estimate of the error variance 2 c) Construct 95% confidence intervals for 1 and 2 d) Conduct a test of the hypothesis Ho : A = 1 against the alternative H! : #1 e) Give a point estimate and 95% confidence interval for the quantity -At +3Ba f) Predict the response value for a new observation with x1 = 0 and x2 = 5 and give a 95% prediction intervalExplanation / Answer
a)
inv = inv(x'*x)
inv =
0.6500 -0.2000 -0.1500
-0.2000 0.4000 0
-0.1500 0 0.0500
b = inv*x'*y
b =
1.0500
-0.6000
1.4500
hence y^ = 1.05 - 0.6 *x1 + 1.45 *x2
b)
fitted values
x*b
ans =
2.5000
3.9500
5.4000
6.8500
8.3000
1.9000
3.3500
4.8000
6.2500
7.7000
(y - x*b)' * (y - x*b)
ans =
21.9500
SSE = 21.95
error variance = SSE/ (n-k-1) = 21.95/ (10 -2-1) = 3.1357
error_Variance = SSE/(length(y) -k-1)
c)
covariance matrix
3.1357*inv
ans =
2.0382 -0.6271 -0.4704
-0.6271 1.2543 0
-0.4704 0 0.1568
var (b1^) = 1.2543
var(b2^) = 0.1568
df = n-k-1= 10 -2-1 = 7
t-critical = 2.364624
95% confidence interval of b1^ =
(-0.6 - 2.364624 * sqrt(1.2543) , ((-0.6 + 2.364624 * sqrt(1.2543)
=(-3.24826,2.048259)
similarly b2^
(0.513699,2.386301)
d) TS = ( 1.45 -1)/ sqrt(0.1568 )
= 1.13642
since TS < critical value ,we fail to reject the null
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.