Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

11111111111111111111111111111111111111111111111111111111111111111111111111111111

ID: 3341379 • Letter: 1

Question

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

Find the shortest distance, d, from the point (10, 0, -6) to the plane x + y + z = 6. d = Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) f(x, y) = x3 - 108xy + 216 y3 local maximum value(s) local minimum value(s) saddle point(s) (x, y, f) =

Explanation / Answer

d = (a x0+ b y0 + c z0)/ ( a^2 + b^2 + c^2 )^1/2

putiing values,


d = (10 +0 - 6-6)/( 1+1+1)^1/2


d = 2/(3^1/2)


d = 1.1547 unit


22222222222222222222222222222


f(x,y ) = x^3 -108 xy + 216 y^3


differentiating it w r t x and putting it zero,


0 = 3 x^2 - 108 y,


x^2 = 36 y ......(1)


now,

differentiating it w r t yand putting it zero


0 = -108 x + 648 y^2,

x = 6 y^2.......(2)


using 1 and 2 ,


36 y^4 = 36 y,


solving it,


y = 0,

y = 1,


so the critical points are,


(0,0) and (6,1)


now checking for , fxx and fyy


A =fxx = 6x ...and at both point it is +ve


now ,

C= fyy = 1296 y

B = fxy = -108


at (0,0),

A,B, C are zero


hence ,

AC- B^2 = 0,


hence,

test is inclusive at this point.


at (6,1),

A = 36 ,

B = -108

C = 1296


AC- B^2 = 36*1296 - 108^2


so ,

AC-B^2 = 34992


hence ,

AC-B^2 is +ve


and A is also positive,


so ,

(6,1) is a point of minimum.

and there is no saddle point.