The table gives the population of India, in millions, for the second half of the
ID: 3343113 • Letter: T
Question
The table gives the population of India, in millions, for the
second half of the 20th century.
Year Population
1951 361
1961 439
1971 548
1981 683
1991 846
2001 1029
(a) Use the exponential model and the census figures for 1951
and 1961 to predict the population in 2001. Compare with
the actual figure.
(b) Use the exponential model and the census figures for 1961
and 1981 to predict the population in 2001. Compare with
the actual population. Then use this model to predict the
population in the years 2010 and 2020.
; (c) Graph both of the exponential functions in parts (a) and
(b) together with a plot of the actual population. Are these
models reasonable ones?
Explanation / Answer
dP/dt =kP
P = Ae^(kt)
361=Ae^(1951k)
439=Ae^(1961k)
439/361 = e^(10k)
10k=ln(439/361)
P(2001) = Ae^(2001k) = 361e^(50k) = 361*(439/361)^5 = 960.05
(b)683=Ae^(1981k)
683/439 = e^(20k)
20k = ln(683/439)
k=0.05ln(683/439)
A=683/e^(1981k)
P(2001) = Ae^(2001k) = 683e^(20k) = 1062.61
P(2010) = 683e^(29k) = 683(683/439)^(29/20)=1296.45
P(2020) = 683e^(39k) = 683(683/439)^(39/20)=1617.1
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.