Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

(e) Which of the four models is better for predicting the number of victories? (

ID: 3353349 • Letter: #

Question

(e) Which of the four models is better for predicting the number of victories? ( what is better for predicting the number of victories: ERA, Runs, AVG, or OBP?

(f) Find the best multiple regression model to predict the number of wins. Use any combination of the variables to find the best model

This question is in relation to a textbook solution for quantitative analysis for management, 12th edition, chapter 4. problem 31

Data set:

Wins ERA Runs AVG OBP

93 3.90 712 .247 .311

69 4.70 734 .260 .315

85 4.02 748 .255 .318

68 4.78 667 .251 .324

88 3.75 726 .268 .335

72 4.30 676 .265 .317

89 4.02 767 .274 .332

66 4.77 701 .260 .325

95 3.85 804 .265 .337

94 3.48 713 .238 .310

75 3.76 619 .234 .296

90 3.19 697 .240 .317

93 3.99 808 .273 .334

73 4.64 716 .245 .309

Explanation / Answer

e)

Wins Vs ERA

Model Summary

      S    R-sq R-sq(adj) R-sq(pred)

6.76580 64.87%     61.94%      52.95%

Coefficients

Term        Coef SE Coef T-Value P-Value   VIF

Constant   155.1     15.6     9.94    0.000

ERA       -17.87     3.80    -4.71    0.001 1.00

Regression Equation

Wins = 155.1 - 17.87 ERA

Wins vs Runs

Model Summary

      S    R-sq R-sq(adj) R-sq(pred)

9.33163 33.18%     27.61%      17.50%

Coefficients

Term        Coef SE Coef T-Value P-Value   VIF

Constant    -6.9     36.6    -0.19    0.854

Runs     0.1235   0.0506     2.44    0.031 1.00

Regression Equation

Wins = -6.9 + 0.1235 Runs

Wins Vs AVG

Model Summary

      S   R-sq R-sq(adj) R-sq(pred)

11.3657 0.87%      0.00%       0.00%

Coefficients

Term      Coef SE Coef T-Value P-Value   VIF

Constant 62.2     61.4     1.01    0.331

AVG         78      240     0.32    0.751 1.00

Regression Equation

Wins = 62.2 + 78 AVG

Wins Vs OBP

Model Summary

      S   R-sq R-sq(adj) R-sq(pred)

10.8463 9.72%      2.20%       0.00%

Coefficients

Term       Coef SE Coef T-Value P-Value   VIF

Constant -10.3     81.4    -0.13    0.901

OBP         289      254     1.14    0.278 1.00

Regression Equation

Wins = -10.3 + 289 OBP

Wins Vs ERA is the best prediction model with R-squared value 64.87% and Coefficient is significant to output.

F) Multiple regressions:

Below specified models are highest variance covered(R-squared models)

To find the best model have to look R-squared value and variables are coefficient to the regression model output or not.

Wins vs ERA and Runs

Model Summary

      S    R-sq R-sq(adj) R-sq(pred)

3.65161 90.62%     88.91%      85.52%

Coefficients

Term        Coef SE Coef T-Value P-Value   VIF

Constant    72.3     17.3     4.19    0.002

ERA       -16.88     2.06    -8.21    0.000 1.01

Runs      0.1093   0.0199     5.50    0.000 1.01

Regression Equation

Wins = 72.3 - 16.88 ERA + 0.1093 Runs

Wins Vs ERA, Runs and AVG

Model Summary

      S    R-sq R-sq(adj) R-sq(pred)

3.74640 91.02%     88.33%      85.11%

Coefficients

Term        Coef SE Coef T-Value P-Value   VIF

Constant    79.5     20.7     3.84    0.003

ERA       -16.18     2.35    -6.88    0.000 1.25

Runs      0.1235   0.0295     4.19    0.002 2.10

AVG          -80      119    -0.67    0.517 2.25

Regression Equation

Wins = 79.5 - 16.18 ERA + 0.1235 Runs - 80 AVG

Wins Vs ERA, Runs and OBP

Model Summary

      S    R-sq R-sq(adj) R-sq(pred)

3.81031 90.72%     87.93%      82.46%

Coefficients

Term        Coef SE Coef T-Value P-Value   VIF

Constant    80.2     30.4     2.64    0.025

ERA       -16.77     2.17    -7.71    0.000 1.03

Runs      0.1164   0.0304     3.83    0.003 2.17

OBP          -42      131    -0.32    0.755 2.16

Regression Equation

Wins = 80.2 - 16.77 ERA + 0.1164 Runs - 42 OBP

Wins Vs ERA, Runs, AVG and OBP

Model Summary

      S    R-sq R-sq(adj) R-sq(pred)

3.94012 91.06%     87.09%      79.88%

Coefficients

Term        Coef SE Coef T-Value P-Value   VIF

Constant    74.6     32.8     2.27    0.049

ERA       -16.06     2.54    -6.32    0.000 1.32

Runs      0.1215   0.0326     3.73    0.005 2.33

AVG         -105      177    -0.59    0.568 4.52

OBP           39      192     0.20    0.844 4.34

Regression Equation

Wins = 74.6 - 16.06 ERA + 0.1215 Runs - 105 AVG + 39 OBP

Conclusion:

Wins Vs ERA and Runs is the best predicting model with R-squared value 90.62% and Variables are significant to the output variable.

The other models gave the best accuracy but not significant to the output variable.