Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

3.3 Generate 1000 uniform (0,I) numbers using a spreadsheet. (a) Use the Kolmogo

ID: 3353856 • Letter: 3

Question

3.3 Generate 1000 uniform (0,I) numbers using a spreadsheet. (a) Use the Kolmogorov-Smirnov test with alpha = 0.05 to test if the hypothesis that the numbers are uniformly distributed on the (0,1) interval can be rejected. (b) Use a chi-square goodness-of-fit test with 10 intervals and alpha = 0.05 to test if the hypothesis that the numbers are uniformly distributed on the (0,1) interval can be rejected. (c) Test the hypothesis that the numbers are uniformly distributed within the unit square, {(x,y) : x E (0,1 ), y E (0,1)) using the 2D chi-squared test at a 95% con- (d) Test the hypothesis that the numbers have a lag-1 correlation of zero. Make an (e) If you have access to a suitable statistical package, perform a runs above the mean fidence level. Use 10 intervals for each of the dimensions. autocorrelation plot of the numbers. test to check the randomness of the numbers. Use the nonparametric runs test functionality of your statistical software to perform this test. (t) What is your conclusion conceming the suitability of your spreadsheet's random number generator?

Explanation / Answer

Descriptive Statistics

N

Mean

Std. Deviation

Minimum

Maximum

VAR00001

1000

.5039

.29785

.00

1.00

One-Sample Kolmogorov-Smirnov Test

VAR00001

N

1000

Uniform Parametersa,,b

Minimum

.00

Maximum

1.00

Most Extreme Differences

Absolute

.030

Positive

.015

Negative

-.030

Kolmogorov-Smirnov Z

.941

Asymp. Sig. (2-tailed)

.338

a. Test distribution is Uniform.

b. Calculated from data.

Since KS Z = 0.941 and Significance level is 0.338 > 0.05 it means that data is U(0,1)

Lower Limit

Upper Limit

Cum. Freq

Frequncy

Exp Freq

0

0.1

110

110

100

0.1

0.2

209

99

100

0.2

0.3

302

93

100

0.3

0.4

405

103

100

0.4

0.5

499

94

100

0.5

0.6

583

84

100

0.6

0.7

678

95

100

0.7

0.8

775

97

100

0.8

0.9

892

117

100

0.9

1

1000

108

100

Chi-Square Value

8.38

P-value

0.496351

P-value > 0.05 means Data supports U(0,1)

X * Y Crosstabulation

Count

Y

Total

1

2

3

4

5

6

7

8

9

X

2

19

9

9

11

4

12

13

8

14

99

3

20

13

10

9

6

8

8

12

7

93

4

24

8

6

14

11

9

6

16

9

103

5

23

15

7

9

6

14

11

5

4

94

6

16

9

8

9

11

6

11

7

7

84

7

21

7

7

9

7

16

13

8

7

95

8

21

10

14

9

12

11

4

10

6

97

9

17

12

13

10

14

13

8

16

14

117

10

38

24

22

20

17

32

25

22

18

218

Total

199

107

96

100

88

121

99

104

86

1000

Chi-Square Tests

Value

df

Asymp. Sig. (2-sided)

Pearson Chi-Square

60.223a

64

.611

Likelihood Ratio

61.380

64

.570

Linear-by-Linear Association

.465

1

.495

N of Valid Cases

1000

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 7.22.

As P value = 0.611 > 0.05 Data supports U(0,1)

v

Runs Test

VAR00001

Test Valuea

.50

Cases < Test Value

500

Cases >= Test Value

500

Total Cases

1000

Number of Runs

514

Z

.823

Asymp. Sig. (2-tailed)

.411

a. Median

Runs Test 2

VAR00001

Test Valuea

.5039

Cases < Test Value

503

Cases >= Test Value

497

Total Cases

1000

Number of Runs

516

Z

.950

Asymp. Sig. (2-tailed)

.342

a. Mean

Descriptive Statistics

N

Mean

Std. Deviation

Minimum

Maximum

VAR00001

1000

.5039

.29785

.00

1.00

One-Sample Kolmogorov-Smirnov Test

VAR00001

N

1000

Uniform Parametersa,,b

Minimum

.00

Maximum

1.00

Most Extreme Differences

Absolute

.030

Positive

.015

Negative

-.030

Kolmogorov-Smirnov Z

.941

Asymp. Sig. (2-tailed)

.338

a. Test distribution is Uniform.

b. Calculated from data.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote