Compare AIC against model1: comment on the coefficients AIC: Start: AIC=100.48 T
ID: 3362330 • Letter: C
Question
Compare AIC against model1: comment on the coefficients
AIC:
Start: AIC=100.48
TotalSleep ~ BodyWt + BrainWt + LifeSpan + Gestation + Predation +
Exposure + Danger
Df Sum of Sq RSS AIC
- BrainWt 1 0.728 314.63 98.577
- LifeSpan 1 0.916 314.82 98.602
- BodyWt 1 5.822 319.73 99.252
- Exposure 1 6.729 320.64 99.371
<none> 313.91 100.480
- Predation 1 41.446 355.35 103.689
- Gestation 1 67.056 380.96 106.611
- Danger 1 103.267 417.17 110.425
Step: AIC=105.14
TotalSleep ~ BodyWt + LifeSpan + Gestation + Predation + Exposure +
Danger
Call:
lm(formula = TotalSleep ~ BodyWt + LifeSpan + Gestation + Predation +
Exposure + Danger, data = mammals2)
Coefficients:
(Intercept) BodyWt LifeSpan Gestation Predation2 Predation3
15.213829 0.002478 -0.014815 -0.019560 4.535830 6.648566
Predation4 Predation5 Exposure2 Exposure3 Exposure4 Exposure5
9.959651 9.277683 -0.616353 -0.810158 1.043284 1.506158
Danger2 Danger3 Danger4 Danger5
-5.802218 -11.141607 -12.655999 -17.867224
> model1.AIC <- stepAIC(model1)
Start: AIC=100.48
TotalSleep ~ BodyWt + BrainWt + LifeSpan + Gestation + Predation +
Exposure + Danger
Df Sum of Sq RSS AIC
- BrainWt 1 0.728 314.63 98.577
- LifeSpan 1 0.916 314.82 98.602
- BodyWt 1 5.822 319.73 99.252
- Exposure 1 6.729 320.64 99.371
<none> 313.91 100.480
- Predation 1 41.446 355.35 103.689
- Gestation 1 67.056 380.96 106.611
- Danger 1 103.267 417.17 110.425
Step: AIC=105.14
TotalSleep ~ BodyWt + LifeSpan + Gestation + Predation + Exposure +
Danger
> summary(model1.AIC)
Call:
lm(formula = TotalSleep ~ BodyWt + LifeSpan + Gestation + Predation +
Exposure + Danger, data = mammals2)
Residuals:
Min 1Q Median 3Q Max
-5.9407 -1.2994 -0.0737 0.8871 6.5839
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.213829 1.595008 9.538 5.62e-10 ***
BodyWt 0.002478 0.002145 1.156 0.25831
LifeSpan -0.014815 0.037346 -0.397 0.69484
Gestation -0.019560 0.008146 -2.401 0.02378 *
Predation2 4.535830 2.285956 1.984 0.05788 .
Predation3 6.648566 3.512354 1.893 0.06955 .
Predation4 9.959651 4.300563 2.316 0.02871 *
Predation5 9.277683 4.628750 2.004 0.05555 .
Exposure2 -0.616353 1.621361 -0.380 0.70693
Exposure3 -0.810158 2.460643 -0.329 0.74461
Exposure4 1.043284 3.236826 0.322 0.74979
Exposure5 1.506158 4.951755 0.304 0.76342
Danger2 -5.802218 2.365976 -2.452 0.02122 *
Danger3 -11.141607 3.473850 -3.207 0.00354 **
Danger4 -12.655999 4.866172 -2.601 0.01514 *
Danger5 -17.867224 6.624647 -2.697 0.01211 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.036 on 26 degrees of freedom
Multiple R-squared: 0.7365, Adjusted R-squared: 0.5844
F-statistic: 4.844 on 15 and 26 DF, p-value: 0.0002236
model1:
Call:
lm(formula = TotalSleep ~ BodyWt + BrainWt + LifeSpan + Gestation +
Predation + Exposure + Danger, data = mammals2)
Residuals:
Min 1Q Median 3Q Max
-6.2292 -1.8823 -0.1445 1.8914 5.9885
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 17.1091251 1.3363885 12.803 1.47e-14 ***
BodyWt 0.0047024 0.0059218 0.794 0.43266
BrainWt -0.0009979 0.0035541 -0.281 0.78059
LifeSpan -0.0145760 0.0462766 -0.315 0.75471
Gestation -0.0188108 0.0069799 -2.695 0.01086 *
Predation 2.3151350 1.0926906 2.119 0.04150 *
Exposure 0.5844391 0.6845807 0.854 0.39924
Danger -4.5375726 1.3567624 -3.344 0.00202 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.039 on 34 degrees of freedom
Multiple R-squared: 0.6548, Adjusted R-squared: 0.5837
F-statistic: 9.213 on 7 and 34 DF, p-value: 2.398e-06
Explanation / Answer
the error of an observed value is the deviation of observed value from the true value of a quantity of and the residual of an observed value is the difference between the observed value and estimated value of the quantity of interest. 3.039 is the residual standard error it is also called regression errors and regression residuals
the number of degrees of freedom is the number of values in final calculation of a statistic that are free to change. the number of independent ways by which a dynamic system can move, without violating any constraint imposed on it, is called number of degrees of freedom.
R squared values are not always bad and high R squared values are not always good.. R squared is a statistical meausre of how close the data are to the fitted regression line. it is also known as the coefficient of determination, or the coefficient of multiple determination for multiple regression.
R squared= explained variation/total variation.
R-squared is always between 0 and 100%
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.