Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The length of time until the breakdown of an essential piece of equipment is imp

ID: 3378626 • Letter: T

Question

The length of time until the breakdown of an essential piece of equipment is important in the decision of the use of auxiliary equipment. Assume time to breakdown of a randomly chosen generator, Y, follows an exponential distribution with a mean of 15 days. What is the probability a generator will break down in the next 21 days? A company owns 7 such generators. Let X denote the random variable describing how many generators break down in the next 21 days. Assuming the breakdown of any one generator is independent of break- downs of the other generators, what is the probability that at least 6 of the 7 generators will operate for the next 21 days without a breakdown?

Explanation / Answer

a)

The left tailed area in an exponential distribution is          
          
Area = 1 - e^(-lambda*x)          
          
As          
          
x = critical value =    21      
          
          
Then          
          
Area =    0.753403036   [ANSWER]

*****************

b)

Here, the probability of no breakdown in the next 21 days is 1 - 0.753403036 = 0.246596964.

Note that P(at least x) = 1 - P(at most x - 1).          
          
Using a cumulative binomial distribution table or technology, matching          
          
n = number of trials =    7      
p = the probability of a success =    0.246596964      
x = our critical value of successes =    6      
          
Then the cumulative probability of P(at most x - 1) from a table/technology is          
          
P(at most   5   ) =    0.998758638
          
Thus, the probability of at least   6   successes is  
          
P(at least   6   ) =    0.001241362 [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote