Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The university hires you to determine whether the current students at UWC receiv

ID: 3381593 • Letter: T

Question

The university hires you to determine whether the current students at UWC receive more parking tickets than the historical average.

In years past, the average UWC student earns $115 in parking tickets over a 4-year period. You take a random sample of 113 out-going seniorsto determine if they earn more or less in parking tickets.

Your sample has a mean of $124 and a standard deviation of $45.

A.) Given our p-value can we reject the null hypothesis that there is no difference in the amount owed in parking tickets between our sample of UWC students and the historical average of $115?

True

False

B.) So...does our sample of 113 UWC seniors come from a population with an average parking ticket expense of $115?

True

False

C.) We can be 95% confident that the population mean for our UWC sample is between ____ and ____?

Explanation / Answer

a)

Formulating the null and alternative hypotheses,              
              
Ho:   u   <=   115  
Ha:    u   >   115  
              
As we can see, this is a    right   tailed test.      
              
              
Getting the test statistic, as              
              
X = sample mean =    124          
uo = hypothesized mean =    115          
n = sample size =    113          
s = standard deviation =    45          
              
Thus, z = (X - uo) * sqrt(n) / s =    2.126029163          
              
Also, the p value is              
              
p =    0.016750416          
              
As P < 0.05, we   REJECT THE NULL HYPOTHESIS. [TRUE]

*************************

B)

FALSE, from the conclusion in part A.

***************************  
c)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    124          
z(alpha/2) = critical z for the confidence interval =    1.959963985          
s = sample standard deviation =    45          
n = sample size =    113          
              
Thus,              
Margin of Error E =    8.297005597          
Lower bound =    115.7029944          
Upper bound =    132.2970056          
              
Thus, the confidence interval is              
              
(   115.7029944   ,   132.2970056   ) [ANSWER]