A Cl is desired for the true average stray-load loss mu (watts) for a certain ty
ID: 3387570 • Letter: A
Question
A Cl is desired for the true average stray-load loss mu (watts) for a certain type of induction motor when the line current is held at 10 amps for a speed of 1500 rpm. Assume that stray-load loss is normally distributed with a = 3.1. (Round your answers to two decimal places.) Compute a 95% Cl for,mu when n = 25 and x = 54.7. watts Compute a 95% Cl for mu when n = 100 and x = 54.7. watts Compute a 99% Cl for mu when n = 100 and x = 54.7. watts Compute an 82% Cl for mu when n = 100 and x = 54.7. watts How large must n be if the width of the 99% interval for mu is to be 1.0? (Round your answer up to the nearest whole number.) n = .Explanation / Answer
a).
Confidence Interval Estimate for the Mean
Data
Population Standard Deviation
3.1
Sample Mean
54.7
Sample Size
25
Confidence Level
95%
Intermediate Calculations
Standard Error of the Mean
0.6200
Z Value
1.9600
Interval Half Width
1.2152
Confidence Interval
Interval Lower Limit
53.48
Interval Upper Limit
55.92
b).
Confidence Interval Estimate for the Mean
Data
Population Standard Deviation
3.1
Sample Mean
54.7
Sample Size
100
Confidence Level
95%
Intermediate Calculations
Standard Error of the Mean
0.3100
Z Value
1.9600
Interval Half Width
0.6076
Confidence Interval
Interval Lower Limit
54.09
Interval Upper Limit
55.31
c).
Confidence Interval Estimate for the Mean
Data
Population Standard Deviation
3.1
Sample Mean
54.7
Sample Size
100
Confidence Level
99%
Intermediate Calculations
Standard Error of the Mean
0.3100
Z Value
2.576
Interval Half Width
0.7985
Confidence Interval
Interval Lower Limit
53.90
Interval Upper Limit
55.50
d).
Confidence Interval Estimate for the Mean
Data
Population Standard Deviation
3.1
Sample Mean
54.7
Sample Size
100
Confidence Level
82%
Intermediate Calculations
Standard Error of the Mean
0.3100
Z Value
1.3408
Interval Half Width
0.4156
Confidence Interval
Interval Lower Limit
54.28
Interval Upper Limit
55.12
e)
For 99%, z=2.576
d=1
sd=3.1
Sample size = (z2*s2)/d2
= (2.5762*3.12)/12
=63.76
The sample size required= 64
Confidence Interval Estimate for the Mean
Data
Population Standard Deviation
3.1
Sample Mean
54.7
Sample Size
25
Confidence Level
95%
Intermediate Calculations
Standard Error of the Mean
0.6200
Z Value
1.9600
Interval Half Width
1.2152
Confidence Interval
Interval Lower Limit
53.48
Interval Upper Limit
55.92
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.