Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A marketing firm asked a random set of married and single men how much they were

ID: 3391579 • Letter: A

Question

A marketing firm asked a random set of married and single men how much they were willing to spend on a vacation. Is there sufficient evidence at = 0.05 to conclude that is there a difference in the two amounts? Married men Single men Sample size 50 40 Sample mean $640 $665 Population variance 5700 9100 A) No, because the test value -0.07 is not in the critical region -1.96 < z < 1.96. B) No, because the test value -1.35 is inside the noncritical region -1.96 < z < 1.96. D) No, because the test value -1.60 is not in critical region -1.96 < z < 1.96. D) No, because the test value -1.60 is in the critical region -1.96 < z < 1.96.

Explanation / Answer

Formulating the null and alternative hypotheses,              
              
Ho:   u1 - u2   =   0  
Ha:   u1 - u2   =/   0  
At level of significance =    0.05          
As we can see, this is a    two   tailed test.      
Calculating the means of each group,              
              
X1 =    640          
X2 =    665          
              
Calculating the standard deviations of each group,              
              
s1 =    75.49834435          
s2 =    95.39392014          
              
Thus, the standard error of their difference is, by using sD = sqrt(s1^2/n1 + s2^2/n2):              
              
n1 = sample size of group 1 =    50          
n2 = sample size of group 2 =    40          

Also, sD =    18.47971861          
              
Thus, the z statistic will be              
              
Z = [X1 - X2 - uD]/sD =    -1.352834452          
              
where uD = hypothesized difference =    0          
              
Now, the critical value for z is              
              
zcrit =    +/-   1.96      
              
Thus,

OPTION B) No, because the test value -1.35 is inside the noncritical region -1.96 < z < 1.96. [ANSWER, B]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote