Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The figures below show the graphs of the exponential functions f(x) and g(x), an

ID: 3423164 • Letter: T

Question

The figures below show the graphs of the exponential functions f(x) and g(x), and the linear function, h(x). The function f(x) has y-intercept 0.75 and goes through the point (1, 6). The function g(x) has y-intercept 2 and goes through the point (2, 2/9). The function h(x) has y-intercept 3 and goes through the point (alpha, alpha + 3). Find a formula for f(x) = ______help (formulas) Find a formula for g(x) = _________help (formulas) Find a formula for h(x) = _______help (formulas) Find the exact value(s) of x such that f(x) = g(x). If there is more than one solution, enter your answers as a comma separated list. x = _____________help (numbers)

Explanation / Answer

(a)

f(x) show exponential growth.             // increase in value of "x" value of "y" also increases.

so the general formula of ecponential growth is y = a*ex

this graph passes through (0, 0.75)

plugging these values in the equation, we get

0.75 = a*e0                                    // e0 = 1

0.75 = a * 1

a = 0.75

so the formula is y = 0.75 ex

(b)

since this is exponential decay

the general equation of this graph is y = a * e-x.

this graph passes through (2, 2/9)

2/9 = a * e-2

a *0.135 = 2/9

a = 1.65

so the equation if the graph is y = 1.65 e-x

(c)

this is a line.

it has y-intercept "3", so it passes through (0, 3)

and this line passes through (a, a+3)

we can find the slope of this line as we have two points

slope (m) = (a+3 - 3) / (a - 0)             // m = (y2 - y1) / (x2 - x1)

m = a / a = 1

m = 1

now we have the slope and one point (0,3)

using point slope form of a line => y - y1 = m (x - x1)

y - 3 = 1 (x - 0)

y - 3 = x

x - y + 3 = 0

(d)

f(x) = g(x)

0.75 ex = 1.65 e-x

0.75 ex = 1.65 * (1/ex )                     // x-a = 1 / xa

ex * ex = 1.65 / 0.75

e2x = 2.2                         // xa * xa = xa + a = x2a

taking natural log both sides

ln e2x = ln 2.2

2x ln e = ln 2.2                // ln ab = b* ln a

2x = 0.7884                  // ln e = 1

x = 0.394

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote