Let the following be a joint probability mass function for the random variables
ID: 3437228 • Letter: L
Question
Let the following be a joint probability mass function for the random variables X and Y.
a)Determine the marginal probability distribution of the random variables X and Y
b)Determine P(X1)
c) Determine P(Y<1.5)
d) Are the random variables X and Y independent? Why or why not?
e)Determine the conditional probability distribution of Y given that X= 1
f)Calculate the correlation coefficient between X and Y
x
y
fxy(x,y)
0
1
1/8
1
0
1/8
1
1
1/4
2
2
1/2
x
y
fxy(x,y)
0
1
1/8
1
0
1/8
1
1
1/4
2
2
1/2
Explanation / Answer
b) P(X<=1) = 1/2
c) P(Y<1.5) = 1/2
e) P(Y/x=1)
is y 0 1 2
p 1/8 1/4 0
--------------------------------------
f) E(XY) = sum of xyP(XY)
= 1/4 + 4(1/2)
= 9/4
E(X)E(Y) = (3/2)(3/2) = 9/4
Hence cov (xy) =0
Corre = 0
x y fxy(x,y) 0 1 1/8 1 0 1/8 1 1 1/4 2 2 1/2 PDF OF x x 0 1 2 Total prob 1/8 3/8 1/2 1 PMF of y y 0 1 2 Total prob 1/8 3/8 1/2 1 f(0,1) 1/8 f(0)f(1) 1/64 As the above two are not equal, x,y not independent.Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.