Assignment IIf you can do this for me I will give it a thumbs up 1. Data is belo
ID: 3440833 • Letter: A
Question
Assignment
IIf you can do this for me I will give it a thumbs up
1. Data is below
Choose three explanatory variables to model the traffic fatality rate; analyze your variables
Set up formal hypothesis tests for each explanatory variable and state your reasoning for choosing a significance level for hypothesis testing
Estimate the model and present your results
Perform t-test analysis on each variable and discuss results of your hypothesis testing, including statistical significance. In Stata, use "test" command follows by the exogenous variable you want to test. See Appendix B on page 584-585 for the critical values. (You can do something fancier with this command e.g. test x1+x2=1, if you have a null hypothesis that the coefficient of two variables should sum up to 1 for example a constant return to scale of a Cobb-Douglas production function. This is not a part of this exercise)
Discuss the results in terms of your original expectations
Here is the data
state year mrall beertax mlda vmiles unrate perinc 1 1982 2.13 1.54 19 7.23 14.4 10544 1 1983 2.35 1.79 19 7.84 13.7 10733 1 1984 2.34 1.71 19 8.26 11.1 11109 1 1985 2.19 1.65 20 8.73 8.9 11333 1 1986 2.67 1.61 21 8.95 9.8 11662 1 1987 2.72 1.56 21 9.17 7.8 11944 1 1988 2.49 1.5 21 9.67 7.2 12369 4 1982 2.5 0.21 19 6.81 9.9 12309 4 1983 2.27 0.21 19 6.59 9.1 12694 4 1984 2.83 0.3 19 6.71 5 13266 4 1985 2.8 0.38 21 6.77 6.5 13727 4 1986 3.07 0.37 21 8.13 6.9 14107 4 1987 2.77 0.36 21 9.37 6.2 14241 4 1988 2.71 0.35 21 9.82 6.3 14408 5 1982 2.38 0.65 21 7.21 9.8 10267 5 1983 2.4 0.68 21 7.18 10.1 10433 5 1984 2.24 0.6 21 7.08 8.9 10916 5 1985 2.26 0.58 21 7.25 8.7 11149 5 1986 2.54 0.56 21 7.47 8.7 11399 5 1987 2.68 0.55 21 7.67 8.1 11537 5 1988 2.55 0.52 21 8.02 7.7 11760 6 1982 1.86 0.11 21 6.86 9.9 15797 6 1983 1.81 0.1 21 7.22 9.7 15970 6 1984 1.95 0.1 21 7.62 7.8 16590 6 1985 1.88 0.1 21 7.87 7.2 16985 6 1986 1.95 0.09 21 8.03 6.7 17356 6 1987 1.99 0.09 21 8.18 5.8 17846 6 1988 1.9 0.09 21 8.53 5.3 18049 8 1982 2.17 0.21 21 7.74 7.7 15082 8 1983 2.05 0.21 21 7.66 6.6 15132 8 1984 1.91 0.2 21 7.71 5.6 15487 8 1985 1.79 0.19 21 8.09 5.9 15570 8 1986 1.85 0.19 21 8.13 7.4 15616 8 1987 1.79 0.18 21 8.18 7.7 15605 8 1988 1.51 0.17 21 8.38 6.4 15845 9 1982 1.65 0.22 19 6.44 6.9 17255 9 1983 1.39 0.23 19 6.57 6 17744 9 1984 1.49 0.25 20 6.68 4.6 18760 9 1985 1.41 0.24 20 6.98 4.9 19313 9 1986 1.41 0.23 21 7.66 3.8 20153 9 1987 1.4 0.23 21 8.34 3.3 21192 9 1988 1.5 0.22 21 8.06 3 22193 10 1982 2.03 0.17 20 7.65 8.5 14264 10 1983 1.82 0.17 20 8.06 8.1 14500 10 1984 2.12 0.16 21 8.37 6.2 14925 10 1985 1.67 0.15 21 8.63 5.3 15409 10 1986 2.15 0.15 21 9.05 4.3 15822 10 1987 2.27 0.14 21 9.45 3.2 16407 10 1988 2.42 0.14 21 9.7 3.2 16998 12 1982 2.53 1.07 19 7.59 8.2 13502 12 1983 2.5 1.17 19 7.6 8.6 13924 12 1984 2.55 1.19 19 7.74 6.3 14308 12 1985 2.49 1.14 20 7.75 6 14761 12 1986 2.42 1.11 21 7.77 5.7 15102 12 1987 2.36 1.08 21 7.79 5.3 15584 12 1988 2.5 1.04 21 8.54 5 15980 13 1982 2.17 2.72 19 8.62 7.8 11774 13 1983 2.26 2.61 19 8.52 7.5 12237 13 1984 2.41 2.51 19 8.64 6 12957 13 1985 2.28 2.42 19 8.99 6.5 13364 13 1986 2.51 2.35 20 9.34 5.9 13892 13 1987 2.57 2.28 21 9.69 5.5 14306 13 1988 2.61 2.19 21 9.82 5.8 14687 16 1982 2.62 0.4 19 8.03 9.8 11079 16 1983 2.66 0.39 19 8.39 9.8 11346 16 1984 2.42 0.37 19 7.78 7.2 11387 16 1985 2.54 0.36 19 7.67 7.9 11460 16 1986 2.57 0.35 19 7.9 8.7 11542 16 1987 2.63 0.34 21 8.14 8 11859 16 1988 2.56 0.32 21 8.1 5.8 12190 17 1982 1.44 0.19 21 5.7 11.3 14743 17 1983 1.33 0.18 21 5.86 11.4 14745 17 1984 1.34 0.17 21 6.07 9.1 15390 17 1985 1.33 0.17 21 6.14 9 15603 17 1986 1.38 0.16 21 6.35 8.1 15989 17 1987 1.43 0.16 21 6.54 7.4 16417 17 1988 1.58 0.15 21 6.76 6.8 16915 18 1982 1.75 0.31 21 7.15 11.9 12283 18 1983 1.86 0.3 21 7.28 11.1 12365 18 1984 1.68 0.28 21 7.48 8.6 13009 18 1985 1.77 0.27 21 7.42 7.9 13161 18 1986 1.89 0.27 21 7.71 6.7 13582 18 1987 1.91 0.26 21 7.98 6.4 13937 18 1988 1.98 0.25 21 9.2 5.3 14364 19 1982 1.65 0.38 19 6.65 8.5 12969 19 1983 1.77 0.36 19 6.77 8.1 12573 19 1984 1.45 0.35 19 7.06 7 13203 19 1985 1.64 0.33 19 7 8 13352 19 1986 1.55 0.38 20 7.19 7 13812 19 1987 1.73 0.43 21 7.34 5.5 14284 19 1988 1.97 0.48 21 7.73 4.5 14112 20 1982 2.07 0.48 21 7.33 6.3 14094 20 1983 1.69 0.47 21 7.48 6.1 13917 20 1984 2.09 0.45 21 7.67 5.2 14309 20 1985 1.98 0.43 21 7.87 5 14631 20 1986 2.03 0.42 21 8.1 5.4 14977 20 1987 1.98 0.41 21 8.3 4.9 15152 20 1988 1.94 0.39 21 8.48 4.8 15167 21 1982 2.23 0.22 21 6.94 10.6 11072 21 1983 2.09 0.21 21 7.19 11.7 10914 21 1984 2.03 0.2 21 7.51 9.3 11442 21 1985 1.91 0.19 21 7.65 9.5 11406 21 1986 2.16 0.19 21 7.86 9.3 11603 21 1987 2.26 0.18 21 8.14 8.8 12008 21 1988 2.25 0.17 21 8.48 7.9 12341 22 1982 2.49 0.87 18 6.14 10.3 12214 22 1983 2.1 0.83 18 6.21 11.8 11994 22 1984 2.15 0.8 18 7.08 10 12018 22 1985 2.08 0.77 18 7.45 11.5 11972 22 1986 2.07 0.75 18 7.11 13.1 11603 22 1987 1.85 0.73 21 6.86 12 11515 22 1988 2.1 0.7 21 7.87 10.9 11831 23 1982 1.46 0.81 20 6.73 8.6 11443 23 1983 1.96 0.77 20 6.92 9 11796 23 1984 2.01 0.74 20 8.08 6.1 12271 23 1985 1.77 0.72 21 7.97 5.4 12609 23 1986 1.83 0.75 21 8.55 5.3 13292 23 1987 1.95 0.79 21 9.07 4.4 13984 23 1988 2.12 0.76 21 9.46 3.8 14539 24 1982 1.5 0.24 21 6.77 8.4 15198 24 1983 1.53 0.23 21 7.12 6.9 15644 24 1984 1.48 0.22 21 7.29 5.4 16313 24 1985 1.66 0.21 21 7.59 4.6 16922 24 1986 1.76 0.21 21 7.83 4.5 17476 24 1987 1.79 0.2 21 8.05 4.2 18167 24 1988 1.69 0.19 21 8.11 4.5 18756 25 1982 1.15 0.29 20 6.38 7.9 15216 25 1983 1.13 0.28 20 6.51 6.9 15802 25 1984 1.15 0.26 20 6.65 4.8 16735 25 1985 1.27 0.25 21 6.82 3.9 17271 25 1986 1.29 0.25 21 7.03 3.8 18146 25 1987 1.18 0.24 21 7.23 3.2 19050 25 1988 1.23 0.23 21 7.36 3.3 20035 26 1982 1.53 0.55 21 6.71 15.5 13247 26 1983 1.45 0.52 21 6.72 14.2 13607 26 1984 1.69 0.5 21 7.01 11.2 14318 26 1985 1.7 0.48 21 7.42 9.9 14831 26 1986 1.76 0.47 21 7.83 8.8 15279 26 1987 1.74 0.46 21 8.23 8.2 15418 26 1988 1.84 0.44 21 8.43 7.6 15931 27 1982 1.38 0.35 19 7.06 7.8 13782 27 1983 1.34 0.33 19 7.49 8.2 13841 27 1984 1.4 0.32 19 7.64 6.3 14734 27 1985 1.45 0.31 19 7.8 6 14983 27 1986 1.36 0.3 20 8.05 5.3 15464 27 1987 1.25 0.32 21 8.28 5.4 15910 27 1988 1.42 0.32 21 8.46 4 16048 28 1982 2.84 1.15 21 6.68 11 9554 28 1983 2.77 1.1 21 6.89 12.6 9514 28 1984 2.61 1.06 21 7.1 10.8 9792 28 1985 2.53 1.08 21 7.32 10.3 9798 28 1986 2.94 1.07 21 7.49 11.7 9997 28 1987 2.88 0.96 21 7.68 10.2 10303 28 1988 2.76 0.92 21 8.41 8.4 10699 29 1982 1.8 0.35 21 7.08 9.2 12969 29 1983 1.84 0.33 21 7.36 9.9 13187 29 1984 1.93 0.32 21 7.71 7.2 13727 29 1985 1.85 0.31 21 7.81 6.4 14034 29 1986 2.23 0.3 21 8.16 6.1 14368 29 1987 2.05 0.29 21 8.5 6.3 14648 29 1988 2.15 0.28 21 8.86 5.7 14872 30 1982 3.16 0.35 19 8.28 8.6 12033 30 1983 3.5 0.33 19 8.8 8.8 11954 30 1984 2.89 0.32 19 8.97 7.4 11907 30 1985 2.7 0.32 19 9.17 7.7 11669 30 1986 2.72 0.32 19 9.58 8.1 12076 30 1987 2.89 0.32 20 9.98 7.4 12291 30 1988 2.46 0.32 21 10.11 6.8 12383 31 1982 1.64 0.38 20 7.19 6.1 13192 31 1983 1.6 0.36 20 7.23 5.7 12920 31 1984 1.78 0.35 20 26.15 4.4 13541 31 1985 1.48 0.37 21 7.51 5.5 13735 31 1986 1.81 0.46 21 7.87 5 13971 31 1987 1.86 0.47 21 8.21 4.9 14300 31 1988 1.63 0.5 21 8.37 3.6 14219 32 1982 3.19 0.16 21 7.3 10.1 14914 32 1983 2.82 0.2 21 7.66 9.8 14864 32 1984 2.72 0.22 21 8 7.8 15214 32 1985 2.77 0.21 21 8.08 8 15565 32 1986 2.41 0.21 21 8.25 6 15976 32 1987 2.6 0.2 21 8.34 6.3 16412 32 1988 2.71 0.19 21 8.53 5.2 16854 33 1982 1.82 0.48 20 7.35 7.4 13834 33 1983 1.99 0.57 20 7.49 5.4 14663 33 1984 1.96 0.74 20 7.46 4.3 15452 33 1985 1.91 0.72 20 7.55 3.9 16281 33 1986 1.67 0.7 21 8.13 2.8 17132 33 1987 1.69 0.68 21 8.67 2.5 17906 33 1988 1.53 0.65 21 8.76 2.4 18705 34 1982 1.43 0.09 19 6.97 9 16666 34 1983 1.25 0.09 21 6.99 7.8 17275 34 1984 1.23 0.08 21 6.96 6.2 18066 34 1985 1.27 0.08 21 7.02 5.7 18662 34 1986 1.36 0.08 21 7.22 5 19421 34 1987 1.33 0.08 21 7.44 4 20313 34 1988 1.36 0.07 21 7.6 3.8 21168 35 1982 4.22 0.24 21 8.66 9.2 11347 35 1983 3.79 0.35 21 8.33 10.1 11289 35 1984 3.49 0.45 21 8.72 7.5 11540 35 1985 3.69 0.43 21 9.15 8.8 11861 35 1986 3.37 0.42 21 9.6 9.2 11826 35 1987 3.79 0.41 21 10.08 8.9 11898 35 1988 3.23 0.39 21 10.14 7.8 12019 36 1982 1.23 0.12 19 4.58 8.6 15159 36 1983 1.17 0.13 19 4.74 8.6 15573 36 1984 1.16 0.14 19 4.92 7.2 16335 36 1985 1.13 0.13 19 5.09 6.5 16709 36 1986 1.19 0.13 21 5.3 6.3 17326 36 1987 1.31 0.12 21 5.5 4.9 18005 36 1988 1.26 0.12 21 5.79 4.2 18580 37 1982 2.17 1.43 21 7.16 9 11079 37 1983 2.03 1.38 21 7.41 8.9 11455 37 1984 2.35 1.32 21 7.81 6.7 12089 37 1985 2.37 1.27 21 7.98 5.4 12354 37 1986 2.6 1.24 21 8.25 5.3 12839 37 1987 2.47 1.2 21 8.51 4.5 13325 37 1988 2.42 1.15 21 8.93 3.6 13767 38 1982 2.2 0.43 21 7.82 5.9 12554 38 1983 1.7 0.41 21 7.88 5.6 12390 38 1984 1.46 0.4 21 7.83 5.1 12690 38 1985 1.31 0.38 21 7.86 5.9 12661 38 1986 1.47 0.37 21 8.15 6.3 12817 38 1987 1.5 0.36 21 8.45 5.2 12971 38 1988 1.56 0.35 21 8.64 4.8 12351 39 1982 1.49 0.43 21 6.66 12.5 13039 39 1983 1.47 0.41 21 6.82 12.2 13236 39 1984 1.53 0.4 21 6.97 9.4 13785 39 1985 1.53 0.38 21 7.03 8.9 13993 39 1986 1.56 0.37 21 7.2 8.1 14280 39 1987 1.64 0.36 21 7.34 7 14598 39 1988 1.62 0.35 21 7.55 6 14953 40 1982 3.26 0.87 21 9.29 5.7 13553 40 1983 2.56 0.83 21 8.93 9 12784 40 1984 2.41 0.95 21 9.36 7 12881 40 1985 2.25 0.96 21 9.45 7.1 12905 40 1986 2.11 0.94 21 9.5 8.2 12656 40 1987 1.82 0.91 21 9.66 7.4 12607 40 1988 1.96 0.87 21 9.99 6.7 12823 41 1982 1.94 0.23 21 7.26 11.5 12626 41 1983 2.07 0.22 21 7.73 10.8 12925 41 1984 2.14 0.21 21 7.83 9.4 13246 41 1985 2.08 0.2 21 7.99 8.8 13376 41 1986 2.29 0.19 21 8.29 8.5 13649 41 1987 2.28 0.19 21 8.57 6.2 14019 41 1988 2.45 0.18 21 9.11 5.8 14326 42 1982 1.53 0.29 21 6 10.9 13652 42 1983 1.45 0.28 21 6.08 11.8 13706 42 1984 1.45 0.26 21 6.25 9.1 13988 42 1985 1.49 0.25 21 6.36 8 14357 42 1986 1.59 0.25 21 6.48 6.8 14713 42 1987 1.66 0.24 21 6.59 5.7 15200 42 1988 1.61 0.23 21 6.77 5.1 15624 44 1982 1.1 0.17 20 6.19 10.2 13327 44 1983 1.05 0.17 20 6.29 8.3 13759 44 1984 0.82 0.16 21 5.51 5.3 14312 44 1985 1.13 0.15 21 6.02 4.9 14595 44 1986 1.27 0.15 21 6.06 4 15109 44 1987 1.15 0.15 21 6.09 3.8 15633 44 1988 1.26 0.14 21 5.89 3.1 16258 45 1982 2.26 2.06 21 7.51 10.8 10394 45 1983 2.59 1.98 21 7.67 10 10694 45 1984 2.77 1.9 21 7.87 7.1 11160 45 1985 2.84 1.83 21 7.97 6.8 11370 45 1986 3.13 1.78 21 8.41 6.2 11675 45 1987 3.17 1.73 21 8.82 5.6 12027 45 1988 2.98 1.66 21 9.15 4.5 12441 46 1982 2.13 0.72 21 9.17 5.5 11323 46 1983 2.5 0.69 21 9.04 5.4 11092 46 1984 2.03 0.66 21 9.08 4.3 11662 46 1985 1.84 0.64 21 8.87 5.1 11684 46 1986 1.89 0.62 21 8.82 4.7 12175 46 1987 1.89 0.61 21 8.76 4.2 12545 46 1988 2.06 0.59 21 9.3 3.9 12276 47 1982 2.26 0.34 19 7.46 11.8 10988 47 1983 2.21 0.32 19 7.73 11.5 11183 47 1984 2.32 0.31 20 7.73 8.6 11704 47 1985 2.31 0.3 21 7.61 8 11919 47 1986 2.56 0.29 21 8.17 8 12372 47 1987 2.57 0.28 21 8.68 6.6 12876 47 1988 2.59 0.27 21 9.03 5.8 13352 48 1982 2.74 0.43 19 8.14 6.9 13943 48 1983 2.42 0.42 19 8.34 8 13693 48 1984 2.43 0.42 19 8.56 5.9 14040 48 1985 2.25 0.46 19 8.75 7 14270 48 1986 2.14 0.45 20 8.82 8.9 13950 48 1987 1.94 0.44 21 9.01 8.4 13889 48 1988 2.01 0.42 21 9.29 7.3 14038 49 1982 1.89 0.36 21 7.01 7.8 10789 49 1983 1.77 0.63 21 7.04 9.2 10780 49 1984 1.94 0.88 21 7.18 6.5 11121 49 1985 1.84 0.85 21 7.32 5.9 11285 49 1986 1.88 0.82 21 7.43 6 11340 49 1987 1.76 0.8 21 7.55 6.4 11389 49 1988 1.76 0.77 21 7.85 4.9 11735 50 1982 2.06 0.71 18 7.68 6.9 12064 50 1983 1.79 0.68 18 7.91 6.9 12187 50 1984 2.15 0.66 18 8.31 5.2 12680 50 1985 2.15 0.63 18 8.76 4.8 13112 50 1986 2.01 0.62 20 8.99 4.7 13741 50 1987 2.17 0.6 21 9.2 3.6 14325 50 1988 2.32 0.57 21 9.97 2.8 14728 51 1982 1.61 0.76 21 7.55 7.7 13878 51 1983 1.62 0.73 21 7.61 6.1 14299 51 1984 1.8 0.7 21 7.9 5 14907 51 1985 1.71 0.67 21 8.4 5.6 15323 51 1986 1.94 0.66 21 8.87 5 15915 51 1987 1.73 0.64 21 9.29 4.2 16486 51 1988 1.78 0.61 21 9.55 3.9 17012 53 1982 1.75 0.23 21 7.31 12.1 14342 53 1983 1.62 0.23 21 8.4 11.2 14534 53 1984 1.72 0.22 21 7.87 9.5 14758 53 1985 1.69 0.21 21 7.8 8.1 14910 53 1986 1.58 0.21 21 8.17 8.2 15376 53 1987 1.72 0.2 21 8.49 7.6 15630 53 1988 1.67 0.19 21 9 6.2 15855 54 1982 2.29 0.48 18 5.57 13.9 10748 54 1983 2.17 0.46 19 5.96 18 10452 54 1984 2.25 0.44 19 6.49 15 10642 54 1985 2.17 0.42 19 6.54 13 10669 54 1986 2.3 0.41 20 6.89 11.8 10889 54 1987 2.48 0.4 21 7.24 10.8 10992 54 1988 2.45 0.38 21 7.4 9.9 11295 55 1982 1.62 0.17 18 6.91 10.7 13214 55 1983 1.53 0.17 18 7.18 10.4 13291 55 1984 1.73 0.16 19 7.43 7.3 13819 55 1985 1.56 0.15 19 7.68 7.2 13952 55 1986 1.56 0.15 20 8.04 7 14352 55 1987 1.66 0.14 21 8.36 6.1 14720 55 1988 1.66 0.14 21 8.75 4.3 14941 56 1982 3.94 0.05 19 10.35 5.8 14600 56 1983 3.35 0.05 19 9.8 8.4 13575 56 1984 3.06 0.05 19 9.99 6.3 13456 56 1985 2.99 0.05 19 10.61 7.1 13595 56 1986 3.31 0.05 19 10.62 9 13127 56 1987 2.63 0.05 19 10.95 8.6 12719 56 1988 3.24 0.04 20 11.81 6.3 13098Explanation / Answer
Here the explanatory variables which are affecting on the traffiv fatility rate are beertax,mlda and unrate.
We want to test the hypothesis that ,
H0 :Bj = 0 Vs H1 : Bj 0. (where Bj is the regression coefficient)
Test statistic for this is,
t = b / SEb with n - 2 degrees of freedom.
Where SEb = standard error of b.
b = regression coefficient.
n = total number of observations.
The data is given in the problem.
The output for this data by using minitab is,
Command : stat ==>regression ==>regression ==>response=y ==>predictors =x1,x2,x3 ==> graphs ==>four in ==>second option==>ok
This will gives us the following output as
Regression Analysis: y versus x1, x2, x3
The regression equation is
y = - 6.70 + 0.029 x1 + 0.644 x2 - 0.341 x3
Predictor Coef SE Coef T P
Constant -6.697 2.236 -3.00 0.003
x1 0.0289 0.1889 0.15 0.879
x2 0.6440 0.1047 6.15 0.000
x3 -0.34054 0.03677 -9.26 0.000
S = 1.64648 R-Sq = 33.0% R-Sq(adj) = 32.4%
Analysis of Variance
Source DF SS MS F P
Regression 3 443.98 147.99 54.59 0.000
Residual Error 332 900.02 2.71
Total 335 1344.00
Here we use level of significance = 0.05
We see that p-value for variable x2 and x3 are less than 0.05 so we reject null hypothesis at 5 % level of significance and for variable x1 p-value> 0.05 so fail to reject null hypothesis.
Conclusion :
For x2 and x3 :regression coefficient for x2 and x3 are differ from 0.
For x1 : regression coefficient for x1 may be 0.
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.